Extensible grids: uniform sampling on a space filling curve
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mathieu Gerber & Nicolas Chopin, 2015. "Sequential quasi Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 509-579, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mathieu GERBER & Nicolas CHOPIN & Nick WHITELEY, 2017. "Negative association, ordering and convergence of resampling methods," Working Papers 2017-36, Center for Research in Economics and Statistics.
- L’Ecuyer, Pierre & Munger, David & Lécot, Christian & Tuffin, Bruno, 2018. "Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 191-201.
- Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
- Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
- Karamé, Frédéric, 2018.
"A new particle filtering approach to estimate stochastic volatility models with Markov-switching,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
- Frédéric Karamé, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Post-Print hal-02296093, HAL.
- Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
- Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
- Dick, Josef & Rudolf, Daniel & Zhu, Houying, 2019. "A weighted discrepancy bound of quasi-Monte Carlo importance sampling," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 100-106.
- Crucinio, Francesca R. & Johansen, Adam M., 2023. "Properties of marginal sequential Monte Carlo methods," Statistics & Probability Letters, Elsevier, vol. 203(C).
- Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
- Karol Gellert & Erik Schlögl, 2021.
"Parameter Learning and Change Detection Using a Particle Filter with Accelerated Adaptation,"
Risks, MDPI, vol. 9(12), pages 1-18, December.
- Karol Gellert & Erik Schlogl, 2018. "Parameter Learning and Change Detection Using a Particle Filter With Accelerated Adaptation," Papers 1806.05387, arXiv.org.
- Karol Gellert & Erik Schlögl, 2018. "Parameter Learning and Change Detection Using a Particle Filter With Accelerated Adaptation," Research Paper Series 392, Quantitative Finance Research Centre, University of Technology, Sydney.
- Duan, Jin-Chuan & Fulop, Andras & Hsieh, Yu-Wei, 2020. "Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Burkhart, Michael C., 2019. "A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding," Thesis Commons 4j3fu, Center for Open Science.
- Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
- Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
- Fabian Goessling, 2018. "Human Capital, Growth, and Asset Prices," CQE Working Papers 6918, Center for Quantitative Economics (CQE), University of Muenster.
- L’Ecuyer, Pierre & Munger, David & Lécot, Christian & Tuffin, Bruno, 2018. "Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 191-201.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
- Fabian Goessling, 2018. "Randomized Quasi Sequential Markov Chain Monte Carlo²," CQE Working Papers 7018, Center for Quantitative Economics (CQE), University of Muenster.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:78:y:2016:i:4:p:917-931. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.