IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v144y2019icp37-43.html
   My bibliography  Save this article

Synthetically lagged models

Author

Listed:
  • Burr, Wesley S.
  • Shin, Hwashin H.
  • Takahara, Glen

Abstract

Epidemiologic studies often report health risk due to short-term air pollution exposure through examination of lagged association, expressing manifestation of population health effects over time. We develop a new approach to the problem of lagged manifestation of air pollution exposure: synthetically lagged models. This approach also generalizes to other lagged time series regression models.

Suggested Citation

  • Burr, Wesley S. & Shin, Hwashin H. & Takahara, Glen, 2019. "Synthetically lagged models," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 37-43.
  • Handle: RePEc:eee:stapro:v:144:y:2019:i:c:p:37-43
    DOI: 10.1016/j.spl.2018.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. J. Welty & R. D. Peng & S. L. Zeger & F. Dominici, 2009. "Bayesian Distributed Lag Models: Estimating Effects of Particulate Matter Air Pollution on Daily Mortality," Biometrics, The International Biometric Society, vol. 65(1), pages 282-291, March.
    2. Francesca Dominici & Jonathan M. Samet & Scott L. Zeger, 2000. "Combining evidence on air pollution and daily mortality from the 20 largest US cities: a hierarchical modelling strategy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 263-302.
    3. Wesley S. Burr & Glen Takahara & Hwashin H. Shin, 2015. "Bias correction in estimation of public health risk attributable to short‐term air pollution exposure," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 298-311, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
    2. Hwashin Hyun Shin & Wesley S. Burr & Dave Stieb & Lani Haque & Harun Kalayci & Branka Jovic & Marc Smith-Doiron, 2018. "Air Health Trend Indicator: Association between Short-Term Exposure to Ground Ozone and Circulatory Hospitalizations in Canada for 17 Years, 1996–2012," IJERPH, MDPI, vol. 15(8), pages 1-19, July.
    3. Shi Li & Bhramar Mukherjee & Stuart Batterman & Malay Ghosh, 2013. "Bayesian Analysis of Time-Series Data under Case-Crossover Designs: Posterior Equivalence and Inference," Biometrics, The International Biometric Society, vol. 69(4), pages 925-936, December.
    4. Dani Gamerman & Luigi Ippoliti & Pasquale Valentini, 2022. "A dynamic structural equation approach to estimate the short‐term effects of air pollution on human health," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 739-769, June.
    5. Jaeeun Yu & Jinsu Park & Taeryon Choi & Masahiro Hashizume & Yoonhee Kim & Yasushi Honda & Yeonseung Chung, 2021. "Nonparametric Bayesian Functional Meta-Regression: Applications in Environmental Epidemiology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 45-70, March.
    6. Koop, Gary & Tole, Lise, 2004. "Measuring the health effects of air pollution: to what extent can we really say that people are dying from bad air?," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 30-54, January.
    7. X. Pautrel, 2008. "Reconsidering the Impact of the Environment on Long-run Growth when Pollution Influences Health and Agents have a Finite-lifetime," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 37-52, May.
    8. Theophilus I. Emeto & Oyelola A. Adegboye & Reza A. Rumi & Mahboob-Ul I. Khan & Majeed Adegboye & Wasif A. Khan & Mahmudur Rahman & Peter K. Streatfield & Kazi M. Rahman, 2020. "Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    9. Vera Ling Hui Phung & Kayo Ueda & Shunji Kasaoka & Xerxes Seposo & Saira Tasmin & Shinichi Yonemochi & Arthit Phosri & Akiko Honda & Hirohisa Takano & Takehiro Michikawa & Hiroshi Nitta, 2018. "Acute Effects of Ambient PM 2.5 on All-Cause and Cause-Specific Emergency Ambulance Dispatches in Japan," IJERPH, MDPI, vol. 15(2), pages 1-12, February.
    10. Wong, Heung & Shao, Quanxi & Ip, Wai-cheung, 2013. "Modeling respiratory illnesses with change point: A lesson from the SARS epidemic in Hong Kong," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 589-599.
    11. Mariaelena Bottazzi Schenone & Elena Grimaccia & Maurizio Vichi, 2024. "Structural equation models for simultaneous modeling of air pollutants," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    12. Duncan Lee & Gavin Shaddick, 2010. "Spatial Modeling of Air Pollution in Studies of Its Short-Term Health Effects," Biometrics, The International Biometric Society, vol. 66(4), pages 1238-1246, December.
    13. Joshua Graff Zivin & Matthew Neidell, 2013. "Environment, Health, and Human Capital," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 689-730, September.
    14. Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 661-671, September.
    15. repec:jss:jstsof:26:i07 is not listed on IDEAS
    16. Duncan Lee & Claire Ferguson & E. Marian Scott, 2011. "Constructing representative air quality indicators with measures of uncertainty," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 109-126, January.
    17. Siqi Zheng & Xiaonan Zhang & Weizeng Sun & Chengtao Lin, 2019. "Air pollution and elite college graduates’ job location choice: evidence from China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(2), pages 295-316, October.
    18. Dragan Ranđelović & Milan Ranđelović & Milan Čabarkapa, 2022. "Using Machine Learning in the Prediction of the Influence of Atmospheric Parameters on Health," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    19. Yuyan Wang & Akhgar Ghassabian & Bo Gu & Yelena Afanasyeva & Yiwei Li & Leonardo Trasande & Mengling Liu, 2023. "Semiparametric distributed lag quantile regression for modeling time‐dependent exposure mixtures," Biometrics, The International Biometric Society, vol. 79(3), pages 2619-2632, September.
    20. Gillian A. Lancaster & Mick Green & Steven Lane, 2006. "Reducing bias in ecological studies: an evaluation of different methodologies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 681-700, October.
    21. Yifeng Wang & Ken Sun & Li Li & Yalin Lei & Sanmang Wu & Yong Jiang & Yanling Xi & Fang Wang & Yanfang Cui, 2022. "Assessing the Public Health Economic Loss from PM 2.5 Pollution in ‘2 + 26’ Cities," IJERPH, MDPI, vol. 19(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:144:y:2019:i:c:p:37-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.