IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v138y2018icp95-103.html
   My bibliography  Save this article

Subsampling based inference for U statistics under thick tails using self-normalization

Author

Listed:
  • Chen, Willa W.
  • Deo, Rohit S.

Abstract

We consider a subsampling approach for U-statistics based on a self-normalized statistic recently suggested by Shao (2015) and establish its consistency. A simple finite averaging of the self-normalizer is proposed to reduce the average length of the associated confidence interval. Our procedure is robust to thick tailed distributions and skewed distributions and in simulations for the Gini index, is seen to provide an improvement over the t-statistic based intervals.

Suggested Citation

  • Chen, Willa W. & Deo, Rohit S., 2018. "Subsampling based inference for U statistics under thick tails using self-normalization," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 95-103.
  • Handle: RePEc:eee:stapro:v:138:y:2018:i:c:p:95-103
    DOI: 10.1016/j.spl.2018.02.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218301020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.02.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lobato I. N., 2001. "Testing That a Dependent Process Is Uncorrelated," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1066-1076, September.
    2. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    3. Xiaofeng Shao, 2010. "Corrigendum: A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 695-696, November.
    4. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    5. Wang, Dongliang & Zhao, Yichuan & Gilmore, Dirk W., 2016. "Jackknife empirical likelihood confidence interval for the Gini index," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 289-295.
    6. Xiaofeng Shao, 2015. "Self-Normalization for Time Series: A Review of Recent Developments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1797-1817, December.
    7. Nasari, Masoud M., 2009. "On weak approximations of U-statistics," Statistics & Probability Letters, Elsevier, vol. 79(13), pages 1528-1535, July.
    8. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    9. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    10. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    2. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    3. Xuexin Wang & Yixiao Sun, 2020. "An Asymptotic F Test for Uncorrelatedness in the Presence of Time Series Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 536-550, July.
    4. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    5. Kim, Seonjin & Zhao, Zhibiao & Shao, Xiaofeng, 2015. "Nonparametric functional central limit theorem for time series regression with application to self-normalized confidence interval," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 277-290.
    6. Zhang, Jingsi & Jiang, Wenxin & Shao, Xiaofeng, 2013. "Bayesian model selection based on parameter estimates from subsamples," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 979-986.
    7. Aigner, Maximilian & Chavez-Demoulin, Valérie & Guillou, Armelle, 2022. "Measuring and comparing risks of different types," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 1-21.
    8. Uribe, Jorge M. & Guillen, Montserrat & Mosquera-López, Stephania, 2018. "Uncovering the nonlinear predictive causality between natural gas and electricity prices," Energy Economics, Elsevier, vol. 74(C), pages 904-916.
    9. Yi-Ting Chen & Zhongjun Qu, 2015. "M Tests with a New Normalization Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
    10. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    11. Yeonwoo Rho & Xiaofeng Shao, 2015. "Inference for Time Series Regression Models With Weakly Dependent and Heteroscedastic Errors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 444-457, July.
    12. Zhang, Xianyang & Shao, Xiaofeng, 2013. "On a general class of long run variance estimators," Economics Letters, Elsevier, vol. 120(3), pages 437-441.
    13. Yinxiao Huang & Stanislav Volgushev & Xiaofeng Shao, 2015. "On Self-Normalization For Censored Dependent Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 109-124, January.
    14. Xianyang Zhang & Bo Li & Xiaofeng Shao, 2014. "Self-normalization for Spatial Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 311-324, June.
    15. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    16. Sudheesh K. Kattumannil & N. Sreelakshmi & N. Balakrishnan, 2022. "Non-Parametric Inference for Gini Covariance and its Variants," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 790-807, August.
    17. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    18. Kattumannil, Sudheesh K. & Dewan, Isha & N., Sreelaksmi, 2021. "Non-parametric estimation of Gini index with right censored observations," Statistics & Probability Letters, Elsevier, vol. 175(C).
    19. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
    20. Yang Wei & Zhouping Li & Yunqiu Dai, 2022. "Unified smoothed jackknife empirical likelihood tests for comparing income inequality indices," Statistical Papers, Springer, vol. 63(5), pages 1415-1475, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:138:y:2018:i:c:p:95-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.