IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v136y2018icp15-19.html
   My bibliography  Save this article

Data learning from big data

Author

Listed:
  • Torrecilla, José L.
  • Romo, Juan

Abstract

Technology is generating a huge and growing availability of observations of diverse nature. This big data is placing data learning as a central scientific discipline. It includes collection, storage, preprocessing, visualization and, essentially, statistical analysis of enormous batches of data. In this paper, we discuss the role of statistics regarding some of the issues raised by big data in this new paradigm and also propose the name of data learning to describe all the activities that allow to obtain relevant knowledge from this new source of information.

Suggested Citation

  • Torrecilla, José L. & Romo, Juan, 2018. "Data learning from big data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 15-19.
  • Handle: RePEc:eee:stapro:v:136:y:2018:i:c:p:15-19
    DOI: 10.1016/j.spl.2018.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521830083X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clifford Lynch, 2008. "How do your data grow?," Nature, Nature, vol. 455(7209), pages 28-29, September.
    2. James, Gareth M., 2018. "Statistics within business in the era of big data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 155-159.
    3. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    4. Secchi, Piercesare, 2018. "On the role of statistics in the era of big data: A call for a debate," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 10-14.
    5. Dunson, David B., 2018. "Statistics in the big data era: Failures of the machine," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 4-9.
    6. Vieu, Philippe, 2018. "On dimension reduction models for functional data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 134-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sim Jia Jin & Abdul Halim Abdullah & Mahani Mokhtar & Umar Haiyat Abdul Kohar, 2022. "The Potential of Big Data Application in Mathematics Education in Malaysia," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    2. Russell Tatenda Munodawafa & Satirenjit Kaur Johl, 2019. "Big Data Analytics Capabilities and Eco-Innovation: A Study of Energy Companies," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    3. Pedro Galeano & Daniel Peña, 2019. "Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 289-329, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reid, Nancy, 2018. "Statistical science in the world of big data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 42-45.
    2. Claudio Vitari & Elisabetta Raguseo, 2016. "Big data value and financial performance: an empirical investigation [Digital data, dynamic capability and financial performance: an empirical investigation in the era of Big Data]," Post-Print halshs-01923271, HAL.
    3. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    4. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
    5. Emanuele Aliverti & Kristian Lum & James E. Johndrow & David B. Dunson, 2021. "Removing the influence of group variables in high‐dimensional predictive modelling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 791-811, July.
    6. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Daas Piet J.H. & Puts Marco J. & Buelens Bart & Hurk Paul A.M. van den, 2015. "Big Data as a Source for Official Statistics," Journal of Official Statistics, Sciendo, vol. 31(2), pages 249-262, June.
    8. Emmanuel Paradis, 2022. "Reduced multidimensional scaling," Computational Statistics, Springer, vol. 37(1), pages 91-105, March.
    9. Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019. "Optimal shrinkage estimator for high-dimensional mean vector," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
    10. Elisabetta Raguseo & Claudio Vitari, 2017. "Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects," Grenoble Ecole de Management (Post-Print) halshs-01923259, HAL.
    11. Hassani, Hossein & Beneki, Christina & Silva, Emmanuel Sirimal & Vandeput, Nicolas & Madsen, Dag Øivind, 2021. "The science of statistics versus data science: What is the future?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    12. Paola Perchinunno & Massimo Bilancia & Domenico Vitale, 2021. "A Statistical Analysis of Factors Affecting Higher Education Dropouts," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 341-362, August.
    13. Nagel, Mats, 2020. "Changing perspectives: Towards detailed phenotyping in genetics," Thesis Commons a4nz2, Center for Open Science.
    14. José García & Christopher Pope & Francisco Altimiras, 2017. "A Distributed -Means Segmentation Algorithm Applied to Lobesia botrana Recognition," Complexity, Hindawi, vol. 2017, pages 1-14, August.
    15. Perrons, Robert K. & McAuley, Derek, 2015. "The case for “n«all”: Why the Big Data revolution will probably happen differently in the mining sector," Resources Policy, Elsevier, vol. 46(P2), pages 234-238.
    16. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    17. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Shenzhen Tian & Xueming Li & Jun Yang & Hui Wang & Jianke Guo, 2023. "Spatiotemporal evolution of pseudo human settlements: case study of 36 cities in the three provinces of Northeast China from 2011 to 2018," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1742-1772, February.
    19. Nitin Sachdeva & Ompal Singh & P. K. Kapur & Diego Galar, 2016. "Multi-criteria intuitionistic fuzzy group decision analysis with TOPSIS method for selecting appropriate cloud solution to manage big data projects," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 316-324, September.
    20. Bühlmann, Peter & van de Geer, Sara, 2018. "Statistics for big data: A perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 37-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:136:y:2018:i:c:p:15-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.