IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v126y2017icp132-138.html
   My bibliography  Save this article

A family of Markov processes in maximal compact subgroups of a semisimple Lie groups

Author

Listed:
  • Arafat, Ahmed
  • Mateu, Jorge
  • Gregori, Pablo

Abstract

We propose and define a family of marked point processes in noncompact semisimple Lie groups. We first generate Lévy processes via marked point processes by using jump–diffusion processes. Then we build a family of Markov processes in a maximal compact subgroup of a given semisimple Lie group.

Suggested Citation

  • Arafat, Ahmed & Mateu, Jorge & Gregori, Pablo, 2017. "A family of Markov processes in maximal compact subgroups of a semisimple Lie groups," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 132-138.
  • Handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:132-138
    DOI: 10.1016/j.spl.2017.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215303758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:43:y:1988:i:1:p:155-74 is not listed on IDEAS
    2. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    4. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    5. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    6. Daniel Andersson & Boualem Djehiche, 2010. "A maximum principle for relaxed stochastic control of linear SDEs with application to bond portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 273-310, October.
    7. Andrea Roncoroni, 2001. "Change of numéraire for affine arbitrage pricing models driven by multifactor marked point processes," ICER Working Papers - Applied Mathematics Series 22-2001, ICER - International Centre for Economic Research.
    8. Lijun Bo & Ying Jiao & Xuewei Yang, 2011. "Credit derivatives pricing with default density term structure modelled by L\'evy random fields," Papers 1112.2952, arXiv.org.
    9. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    10. Lin, Shih-Kuei & Wang, Shin-Yun & Chen, Carl R. & Xu, Lian-Wen, 2017. "Pricing Range Accrual Interest Rate Swap employing LIBOR market models with jump risks," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 359-373.
    11. Hasler, Michael & Khapko, Mariana & Marfè, Roberto, 2019. "Should investors learn about the timing of equity risk?," Journal of Financial Economics, Elsevier, vol. 132(3), pages 182-204.
    12. Hinnerich, Mia, 2008. "Inflation-indexed swaps and swaptions," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2293-2306, November.
    13. Silvia Florio & Wolfgang Runggaldier, 1999. "On hedging in finite security markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 159-176.
    14. Alessandro Ramponi, 2011. "Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 349-368, June.
    15. Carl Chiarella & Christina Sklibosios, 2003. "A Class of Jump-Diffusion Bond Pricing Models within the HJM Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 87-127, September.
    16. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    17. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Jump-Diffusion Processes," Research Paper Series 157, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Claudio Fontana & Simone Pavarana & Wolfgang J. Runggaldier, 2023. "A stochastic control perspective on term structure models with roll-over risk," Finance and Stochastics, Springer, vol. 27(4), pages 903-932, October.
    19. Jirô Akahori & Takahiro Tsuchiya, 2006. "What is the Natural Scale for a Lévy Process in Modelling Term Structure of Interest Rates?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 299-313, December.
    20. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlogl, 2007. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton Models with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 365-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:132-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.