IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v124y2017icp83-91.html
   My bibliography  Save this article

Functional central limit theorems for the Nelson–Aalen and Kaplan–Meier estimators for dependent stationary data

Author

Listed:
  • Anevski, Dragi

Abstract

We derive process limit distribution results for the Nelson–Aalen estimator of a hazard function and for the Kaplan–Meier estimator of a distribution function, under different dependence assumptions. The data are assumed to be right censored observations of a stationary time series. We treat weakly dependent as well as long range dependent data, and allow for qualitative differences in the dependence for the censoring times versus the time of interest.

Suggested Citation

  • Anevski, Dragi, 2017. "Functional central limit theorems for the Nelson–Aalen and Kaplan–Meier estimators for dependent stationary data," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 83-91.
  • Handle: RePEc:eee:stapro:v:124:y:2017:i:c:p:83-91
    DOI: 10.1016/j.spl.2017.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217300123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Liuquan & Zhou, Xian, 2001. "Survival function and density estimation for truncated dependent data," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 47-57, March.
    2. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budhi Arta Surya, 2021. "Some results on maximum likelihood from incomplete data: finite sample properties and improved M-estimator for resampling," Papers 2108.01243, arXiv.org, revised Jul 2022.
    2. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    3. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    4. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    5. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    6. Schweer, Sebastian & Wichelhaus, Cornelia, 2020. "Nonparametric estimation of the service time distribution in discrete-time queueing networks," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4643-4666.
    7. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    8. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    9. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    10. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    11. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers 43/12, Institute for Fiscal Studies.
    12. D'Haultfoeuille, Xavier & Gaillac, Christophe & Maurel, Arnaud, 2018. "Rationalizing Rational Expectations? Tests and Deviations," IZA Discussion Papers 11989, Institute of Labor Economics (IZA).
    13. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    14. Julian Martinez-Iriarte & YiXiao Sun, 2022. "Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: an Unconditional MTE Approach," Working Papers 131, Red Nacional de Investigadores en Economía (RedNIE).
    15. Yoici Arai & Taisuke Otsu & Mengshan Xu, 2022. "GLS under monotone heteroskedasticity," STICERD - Econometrics Paper Series 625, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Khanh To Duc & Monica Chiogna & Gianfranco Adimari, 2019. "Estimation of the volume under the ROC surface in presence of nonignorable verification bias," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 695-722, December.
    17. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    18. Jochmans, Koen & Higgins, Ayden, 2022. "Bootstrap inference for fixed-effect models," TSE Working Papers 22-1328, Toulouse School of Economics (TSE), revised Dec 2023.
    19. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    20. , & , & ,, 2016. "Fragility of asymptotic agreement under Bayesian learning," Theoretical Economics, Econometric Society, vol. 11(1), January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:124:y:2017:i:c:p:83-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.