IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v118y2016icp190-196.html
   My bibliography  Save this article

Likelihood based inference for partially observed renewal processes

Author

Listed:
  • van Lieshout, M.N.M.

Abstract

This paper is concerned with inference for renewal processes on the real line that are observed in a broken interval. For such processes, the classic history-based approach cannot be used. Instead, we adapt tools from sequential spatial point process theory to propose a Monte Carlo maximum likelihood estimator that takes into account the missing data. Its efficacy is assessed by means of a simulation study and the missing data reconstruction is illustrated on real data.

Suggested Citation

  • van Lieshout, M.N.M., 2016. "Likelihood based inference for partially observed renewal processes," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 190-196.
  • Handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:190-196
    DOI: 10.1016/j.spl.2016.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216301183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders Brix & Peter J. Diggle, 2001. "Spatiotemporal prediction for log‐Gaussian Cox processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 823-841.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilman M. Davies & Martin L. Hazelton, 2013. "Assessing minimum contrast parameter estimation for spatial and spatiotemporal log‐Gaussian Cox processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 355-389, November.
    2. Matthew J. Heaton & Stephan R. Sain & Andrew J. Monaghan & Olga V. Wilhelmi & Mary H. Hayden, 2015. "An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 123-135, March.
    3. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    4. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    5. Katharina Parry & David P. Watling & Martin L. Hazelton, 2016. "A new class of doubly stochastic day-to-day dynamic traffic assignment models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 5-23, March.
    6. Fangpo Wang & Anirban Bhattacharya & Alan E. Gelfand, 2018. "Rejoinder on: Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 783-786, December.
    7. Markéta Zikmundová & Kateřina Staňková Helisová & Viktor Beneš, 2012. "Spatio-Temporal Model for a Random Set Given by a Union of Interacting Discs," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 883-894, September.
    8. R. Lechnerová & K. Helisová & V. Beneš, 2008. "Cox Point Processes Driven by Ornstein–Uhlenbeck Type Processes," Methodology and Computing in Applied Probability, Springer, vol. 10(3), pages 315-335, September.
    9. Nicoletta D’Angelo & Giada Adelfio, 2024. "Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes," Statistical Papers, Springer, vol. 65(6), pages 3651-3679, August.
    10. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    11. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    12. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    13. Reis, Edna A. & Gamerman, Dani & Paez, Marina S. & Martins, Thiago G., 2013. "Bayesian dynamic models for space–time point processes," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 146-156.
    14. Michele Nguyen & Almut E. D. Veraart, 2017. "Spatio-temporal Ornstein–Uhlenbeck Processes: Theory, Simulation and Statistical Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 46-80, March.
    15. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    16. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    17. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    19. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    20. Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:190-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.