IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v117y2016icp158-164.html
   My bibliography  Save this article

Expected distances and goodness-of-fit for the asymmetric Laplace distribution

Author

Listed:
  • Rizzo, Maria L.
  • Haman, John T.

Abstract

New results on expected distances for the asymmetric Laplace distribution are derived and applied to develop a new goodness-of-fit test for the asymmetric Laplace distribution based on the energy distance.

Suggested Citation

  • Rizzo, Maria L. & Haman, John T., 2016. "Expected distances and goodness-of-fit for the asymmetric Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 158-164.
  • Handle: RePEc:eee:stapro:v:117:y:2016:i:c:p:158-164
    DOI: 10.1016/j.spl.2016.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216300591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabor J. Szekely & Maria L. Rizzo, 2005. "Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 151-183, September.
    2. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    2. Lovato, Ilenia & Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2020. "Model-free two-sample test for network-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. John Lawrence, 2023. "Moments of the Noncentral Chi Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1243-1259, August.
    4. Gábor J. Székely & Maria L. Rizzo, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^{2}$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 907-910, December.
    5. Constandina Koki & Loukia Meligkotsidou & Ioannis Vrontos, 2020. "Forecasting under model uncertainty: Non‐homogeneous hidden Markov models with Pòlya‐Gamma data augmentation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 580-598, July.
    6. Zdeňka Náglová & Tereza Horáková, 2017. "Position of the Bakery Enterprises in the Czech Republic According to Detailed Specification of the Businesses," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(5), pages 1719-1727.
    7. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    8. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    9. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
    10. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    11. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    12. Brault, Vincent & Ouadah, Sarah & Sansonnet, Laure & Lévy-Leduc, Céline, 2018. "Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 143-165.
    13. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    14. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    15. Araújo, Tanya & Dias, João & Eleutério, Samuel & Louçã, Francisco, 2013. "A measure of multivariate kurtosis for the identification of the dynamics of a N-dimensional market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3708-3714.
    16. Athanasios Constantopoulos & John Yfantopoulos & Panos Xenos & Athanassios Vozikis, 2019. "Cluster shifts based on healthcare factors: The case of Greece in an OECD background 2009-2014," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 9(6), pages 1-4.
    17. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    19. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    20. Chen, Xiao & Feng, Zhenghui & Peng, Heng, 2023. "Estimation and order selection for multivariate exponential power mixture models," Journal of Multivariate Analysis, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:117:y:2016:i:c:p:158-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.