IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v116y2016icp72-79.html
   My bibliography  Save this article

Robust nonparametric kernel regression estimator

Author

Listed:
  • Zhao, Ge
  • Ma, Yanyuan

Abstract

In robust nonparametric kernel regression context, we prescribe method to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics.

Suggested Citation

  • Zhao, Ge & Ma, Yanyuan, 2016. "Robust nonparametric kernel regression estimator," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 72-79.
  • Handle: RePEc:eee:stapro:v:116:y:2016:i:c:p:72-79
    DOI: 10.1016/j.spl.2016.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216300293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Bianco & Graciela Boente, 2007. "Robust estimators under semi‐parametric partly linear autoregression: Asymptotic behaviour and bandwidth selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 274-306, March.
    2. Bianco, Ana M. & Boente, Graciela & Sombielle, Susana, 2011. "Robust estimation for nonparametric generalized regression," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1986-1994.
    3. Boente, Graciela & Rodriguez, Daniela, 2006. "Robust estimators of high order derivatives of regression functions," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1335-1344, July.
    4. Boente, Graciela & Fraiman, Ricardo, 1989. "Robust nonparametric regression estimation," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 180-198, May.
    5. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helida Nurcahayani & I Nyoman Budiantara & Ismaini Zain, 2021. "The Curve Estimation of Combined Truncated Spline and Fourier Series Estimators for Multiresponse Nonparametric Regression," Mathematics, MDPI, vol. 9(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graciela Boente & Alejandra Martínez & Matías Salibián-Barrera, 2017. "Robust estimators for additive models using backfitting," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 744-767, October.
    2. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    3. Boente, Graciela & Ruiz, Marcelo & Zamar, Ruben H., 2012. "Bandwidth choice for robust nonparametric scale function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1594-1608.
    4. Mariela Sued & Marina Valdora & Víctor Yohai, 2020. "Robust doubly protected estimators for quantiles with missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 819-843, September.
    5. Graciela Boente & Alejandra Martínez, 2017. "Marginal integration M-estimators for additive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 231-260, June.
    6. Boente, Graciela & Ruiz, Marcelo & Zamar, Ruben H., 2010. "On a robust local estimator for the scale function in heteroscedastic nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1185-1195, August.
    7. Azzedine, Nadjia & Laksaci, Ali & Ould-Saïd, Elias, 2008. "On robust nonparametric regression estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3216-3221, December.
    8. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    9. Omar Fetitah & Mohammed Kadi Attouch & Salah Khardani & Ali Righi, 2023. "Robust nonparametric equivariant regression for functional data with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 899-929, November.
    10. Boente, Graciela & Pardo-Fernández, Juan Carlos, 2016. "Robust testing for superiority between two regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 151-168.
    11. Mohamed Lemdani & Elias Ould Saïd, 2017. "Nonparametric robust regression estimation for censored data," Statistical Papers, Springer, vol. 58(2), pages 505-525, June.
    12. Claudio Agostinelli & Ana M. Bianco & Graciela Boente, 2020. "Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 855-893, June.
    13. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    14. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    15. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    16. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
    17. Croux, Christophe & Gelper, Sarah & Mahieu, Koen, 2010. "Robust exponential smoothing of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2999-3006, December.
    18. Beran, Jan & Ghosh, Sucharita & Sibbertsen, Philipp, 2000. "Nonparametric M-estimation with long-memory errors," Technical Reports 2000,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Bianco, Ana & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2010. "Estimation of the marginal location under a partially linear model with missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 546-564, February.
    20. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:116:y:2016:i:c:p:72-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.