IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1594-1608.html
   My bibliography  Save this article

Bandwidth choice for robust nonparametric scale function estimation

Author

Listed:
  • Boente, Graciela
  • Ruiz, Marcelo
  • Zamar, Ruben H.

Abstract

We introduce and compare several robust procedures for bandwidth selection when estimating the variance function. These bandwidth selectors are to be used in combination with the robust scale estimates introduced by Boente et al. (2010a). We consider two different robust cross-validation strategies combined with two ways for measuring the cross-validation prediction error. The different proposals are compared with non robust alternatives using Monte Carlo simulation. We also derive some asymptotic results to investigate the large sample performance of the corresponding robust data-driven scale estimators.

Suggested Citation

  • Boente, Graciela & Ruiz, Marcelo & Zamar, Ruben H., 2012. "Bandwidth choice for robust nonparametric scale function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1594-1608.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1594-1608
    DOI: 10.1016/j.csda.2011.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003598
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Bianco & Graciela Boente, 2007. "Robust estimators under semi‐parametric partly linear autoregression: Asymptotic behaviour and bandwidth selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 274-306, March.
    2. Levine, M., 2006. "Bandwidth selection for a class of difference-based variance estimators in the nonparametric regression: A possible approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3405-3431, August.
    3. Boente, Graciela & Ruiz, Marcelo & Zamar, Ruben H., 2010. "On a robust local estimator for the scale function in heteroscedastic nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1185-1195, August.
    4. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    5. Boente, Graciela & Fraiman, Ricardo, 1989. "Robust nonparametric regression estimation," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 180-198, May.
    6. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    7. Holger Dette & Mareen Marchlewski, 2010. "A robust test for homoscedasticity in nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(6), pages 723-736.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boente, Graciela & Ruiz, Marcelo & Zamar, Ruben H., 2010. "On a robust local estimator for the scale function in heteroscedastic nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1185-1195, August.
    2. Zhao, Ge & Ma, Yanyuan, 2016. "Robust nonparametric kernel regression estimator," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 72-79.
    3. Graciela Boente & Alejandra Martínez & Matías Salibián-Barrera, 2017. "Robust estimators for additive models using backfitting," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 744-767, October.
    4. Boente, Graciela & Pardo-Fernández, Juan Carlos, 2016. "Robust testing for superiority between two regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 151-168.
    5. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    6. Mariela Sued & Marina Valdora & Víctor Yohai, 2020. "Robust doubly protected estimators for quantiles with missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 819-843, September.
    7. Graciela Boente & Alejandra Martínez, 2017. "Marginal integration M-estimators for additive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 231-260, June.
    8. Li Cai & Lijian Yang, 2015. "A smooth simultaneous confidence band for conditional variance function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 632-655, September.
    9. Claudio Agostinelli & Ana M. Bianco & Graciela Boente, 2020. "Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 855-893, June.
    10. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    11. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    12. Franke, Jurgen & Neumann, Michael H. & Stockis, Jean-Pierre, 2004. "Bootstrapping nonparametric estimators of the volatility function," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 189-218.
    13. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    14. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    15. Yanchun Jin, 2016. "Nonparametric tests for the effect of treatment on conditional variance," KIER Working Papers 948, Kyoto University, Institute of Economic Research.
    16. Holger Dette & Kay Pilz, 2009. "On the estimation of a monotone conditional variance in nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 111-141, March.
    17. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    18. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    19. Sami MESTIRI, 2022. "Modeling the volatility of Bitcoin returns using Nonparametric GARCH models," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 2-16, June.
    20. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1594-1608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.