On the maximum of a subcritical branching process in a random environment
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tanny, David, 1988. "A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means," Stochastic Processes and their Applications, Elsevier, vol. 28(1), pages 123-139, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gantert, Nina & Shi, Zhan, 2002. "Many visits to a single site by a transient random walk in random environment," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 159-176, June.
- Chen, Dayue & de Raphélis, Loïc & Hu, Yueyun, 2018. "Favorite sites of randomly biased walks on a supercritical Galton–Watson tree," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1525-1557.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.
- Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.
- Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
- Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
- Alsmeyer, Gerold & Gröttrup, Sören, 2016. "Branching within branching: A model for host–parasite co-evolution," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1839-1883.
- Gao, Zhiqiang & Liu, Quansheng, 2016. "Exact convergence rates in central limit theorems for a branching random walk with a random environment in time," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2634-2664.
- Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
- Gao, Zhi-Qiang, 2021. "Exact convergence rate in the central limit theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 178(C).
More about this item
Keywords
Branching processes Random environment;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:93:y:2001:i:1:p:87-107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.