IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v81y1999i2p255-269.html
   My bibliography  Save this article

Ruin problems with assets and liabilities of diffusion type

Author

Listed:
  • Norberg, Ragnar

Abstract

Ruin and related problems are studied for a risk business with compounding assets when the cash flow and the cumulative interest rate are diffusion processes with coefficients depending on the time and on the current cash balance. Differential equations are obtained for the probabilities of ruin at a given date, in finite time, and in infinite time. Some previously known explicit formulas related to Brownian motion come out as special cases. Relationships between crossing probabilities and transition probabilities are investigated and, in particular, existing results on the probability distribution of the running maximum of a Brownian motion and on the relationship between the probability of ruin and on the probability distribution of the discounted total payments are generalized. Proofs rest on a martingale technique.

Suggested Citation

  • Norberg, Ragnar, 1999. "Ruin problems with assets and liabilities of diffusion type," Stochastic Processes and their Applications, Elsevier, vol. 81(2), pages 255-269, June.
  • Handle: RePEc:eee:spapps:v:81:y:1999:i:2:p:255-269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00103-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garrido, Jose, 1989. "Stochastic differential equations for compounded risk reserves," Insurance: Mathematics and Economics, Elsevier, vol. 8(3), pages 165-173, November.
    2. Harrison, J. Michael, 1977. "Ruin problems with compounding assets," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 67-79, February.
    3. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing-Fang Huang & Ting Zhang & Yang Yang & Tao Jiang, 2017. "Ruin Probabilities in a Dependent Discrete-Time Risk Model With Gamma-Like Tailed Insurance Risks," Risks, MDPI, vol. 5(1), pages 1-14, March.
    2. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    3. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    4. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
    5. Yang, Yang & Jiang, Tao & Wang, Kaiyong & Yuen, Kam C., 2020. "Interplay of financial and insurance risks in dependent discrete-time risk models," Statistics & Probability Letters, Elsevier, vol. 162(C).
    6. Dimitrios Konstantinides & Christos Kountzakis, 2014. "The restricted convex risk measures in actuarial solvency," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 287-318, October.
    7. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
    8. Brignone, Riccardo & Kyriakou, Ioannis & Fusai, Gianluca, 2021. "Moment-matching approximations for stochastic sums in non-Gaussian Ornstein–Uhlenbeck models," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 232-247.
    9. Huang, Jianhui & Wang, Guangchen & Wu, Zhen, 2010. "Optimal premium policy of an insurance firm: Full and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 208-215, October.
    10. Chen, Yiqing & Yuan, Zhongyi, 2017. "A revisit to ruin probabilities in the presence of heavy-tailed insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 75-81.
    11. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    12. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    13. Xie, Shuxiang, 2009. "Continuous-time mean-variance portfolio selection with liability and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 148-155, August.
    14. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
    15. Zimbidis, Alexandros A., 2014. "Insurance pricing using H∞-control," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 685-697.
    16. Chen, Ping & Yang, Hailiang & Yin, George, 2008. "Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 456-465, December.
    17. Yiqing Chen & Jiajun Liu & Yang Yang, 2023. "Ruin under Light-Tailed or Moderately Heavy-Tailed Insurance Risks Interplayed with Financial Risks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    18. Haiyang Wang & Zhen Wu, 2014. "Partially Observed Time-Inconsistency Recursive Optimization Problem and Application," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 664-687, May.
    19. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    20. M. C. Chiu & D. Li, 2009. "Asset-Liability Management Under the Safety-First Principle," Journal of Optimization Theory and Applications, Springer, vol. 143(3), pages 455-478, December.
    21. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    22. Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
    23. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    24. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    2. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    3. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    4. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    5. Krzysztof Burnecki & Marek A. Teuerle & Aleksandra Wilkowska, 2022. "Diffusion Approximations of the Ruin Probability for the Insurer–Reinsurer Model Driven by a Renewal Process," Risks, MDPI, vol. 10(6), pages 1-16, June.
    6. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    7. Nilsen, Trygve & Paulsen, Jostein, 1996. "On the distribution of a randomly discounted compound Poisson process," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 305-310, February.
    8. Wang, Guojing & Wu, Rong, 2001. "Distributions for the risk process with a stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 329-341, October.
    9. Powers, Michael R., 1995. "A theory of risk, return and solvency," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 101-118, October.
    10. Dong, Y. & Spielmann, J., 2020. "Weak limits of random coefficient autoregressive processes and their application in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 1-11.
    11. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    12. Gjessing, Håkon K. & Paulsen, Jostein, 1997. "Present value distributions with applications to ruin theory and stochastic equations," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 123-144, October.
    13. Yuchao Dong & Jérôme Spielmann, 2020. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Post-Print hal-02170829, HAL.
    14. Yuchao Dong & Jérôme Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Working Papers hal-02170829, HAL.
    15. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    16. Eberlein, Ernst & Kabanov, Yuri & Schmidt, Thorsten, 2022. "Ruin probabilities for a Sparre Andersen model with investments," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 72-84.
    17. Constantinos Kardaras & Scott Robertson, 2017. "Continuous-time perpetuities and time reversal of diffusions," Finance and Stochastics, Springer, vol. 21(1), pages 65-110, January.
    18. Paulsen, Jostein, 1998. "Sharp conditions for certain ruin in a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 135-148, June.
    19. Luo, Shangzhen & Taksar, Michael, 2011. "On absolute ruin minimization under a diffusion approximation model," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 123-133, January.
    20. Albrecher, Hansjörg & Thonhauser, Stefan, 2008. "Optimal dividend strategies for a risk process under force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 134-149, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:81:y:1999:i:2:p:255-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.