IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v232y2014icp685-697.html
   My bibliography  Save this article

Insurance pricing using H∞-control

Author

Listed:
  • Zimbidis, Alexandros A.

Abstract

The paper considers a typical insurance system “suffering” from the three standard “curses”: (a) the stochastic nature of claims, (b) the inherent delays in claims settlement and reserving process and (c) the uncertainty concept that endows many of its parameters and especially the investment process. We construct a general multidimensional model for pricing simultaneously one, two or more different insurance products. The responsible decision maker uses the incomplete information of claims and aims to balance the system by the means of a feedback mechanism. The robust stabilization controller of the system is obtained by the means of H∞-control using typical linear matrix inequalities. Finally, a numerical application is fully investigated providing further insight into the practical problem of pricing assuming the simplest case of a portfolio with a single product.

Suggested Citation

  • Zimbidis, Alexandros A., 2014. "Insurance pricing using H∞-control," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 685-697.
  • Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:685-697
    DOI: 10.1016/j.amc.2014.01.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314001428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.01.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norberg, Ragnar, 1999. "Ruin problems with assets and liabilities of diffusion type," Stochastic Processes and their Applications, Elsevier, vol. 81(2), pages 255-269, June.
    2. Emms, P. & Haberman, S. & Savoulli, I., 2007. "Optimal strategies for pricing general insurance," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 15-34, January.
    3. Young, Virginia R., 2008. "Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 691-703, April.
    4. Zimbidis, Alexandros & Haberman, Steven, 2001. "The combined effect of delay and feedback on the insurance pricing process: a control theory approach," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 263-280, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jianhui & Wang, Guangchen & Wu, Zhen, 2010. "Optimal premium policy of an insurance firm: Full and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 208-215, October.
    2. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    3. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    4. Asmussen, Søren & Christensen, Bent Jesper & Thøgersen, Julie, 2019. "Nash equilibrium premium strategies for push–pull competition in a frictional non-life insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 92-100.
    5. Boonen, Tim J. & Pantelous, Athanasios A. & Wu, Renchao, 2018. "Non-cooperative dynamic games for general insurance markets," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 123-135.
    6. Yiqing Chen & Jiajun Liu & Yang Yang, 2023. "Ruin under Light-Tailed or Moderately Heavy-Tailed Insurance Risks Interplayed with Financial Risks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    7. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    8. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
    9. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
    10. Dutang, Christophe & Albrecher, Hansjoerg & Loisel, Stéphane, 2013. "Competition among non-life insurers under solvency constraints: A game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 231(3), pages 702-711.
    11. Xie, Shuxiang, 2009. "Continuous-time mean-variance portfolio selection with liability and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 148-155, August.
    12. Chen, Ping & Yang, Hailiang & Yin, George, 2008. "Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 456-465, December.
    13. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
    14. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    15. Hua Chen & Michael Sherris & Tao Sun & Wenge Zhu, 2013. "Living With Ambiguity: Pricing Mortality-Linked Securities With Smooth Ambiguity Preferences," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 705-732, September.
    16. Huang, Rachel J. & Miao, Jerry C.Y. & Tzeng, Larry Y., 2013. "Does mortality improvement increase equity risk premiums? A risk perception perspective," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 67-77.
    17. Pantelous, Athanasios A. & Yang, Lin, 2014. "Robust LMI stability, stabilization and H∞ control for premium pricing models with uncertainties into a stochastic discrete-time framework," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 133-143.
    18. Kung, Ko-Lun & Liu, I-Chien & Wang, Chou-Wen, 2021. "Modeling and pricing longevity derivatives using Skellam distribution," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 341-354.
    19. Mourdoukoutas, Fotios & Boonen, Tim J. & Koo, Bonsoo & Pantelous, Athanasios A., 2021. "Pricing in a competitive stochastic insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 44-56.
    20. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng, 2011. "Canonical Valuation of Mortality‐Linked Securities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 853-884, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:685-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.