Approach to stationarity for birth and death on flows
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Barbour, A. D. & Brown, T. C., 1992. "Stein's method and point process approximation," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 9-31, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kao, John & Cinlar, Erhan, 1998. "Spectral expansion of the occupation measure for birth and death on a flow," Stochastic Processes and their Applications, Elsevier, vol. 74(2), pages 203-215, June.
- Höpfner, R. & Löcherbach, E., 1999. "On local asymptotic normality for birth and death on a flow," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 61-77, September.
- R. HÖpfner & E. LÖcherbach, 1998. "Birth and Death on a Flow: Local Time and Estimation of a Position‐Dependent Death Rate," Statistical Inference for Stochastic Processes, Springer, vol. 1(3), pages 225-243, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Shengwu & Xia, Aihua, 1997. "On poisson approximation to the partial sum process of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 101-111, May.
- Schulte, Matthias & Thäle, Christoph, 2012. "The scaling limit of Poisson-driven order statistics with applications in geometric probability," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 4096-4120.
- Schuhmacher, Dominic, 2005. "Distance estimates for dependent superpositions of point processes," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1819-1837, November.
- Gan, H.L. & Xia, A., 2015. "Stein’s method for conditional compound Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 19-26.
- Brown, Timothy C. & Weinberg, Graham V. & Xia, Aihua, 2000. "Removing logarithms from Poisson process error bounds," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 149-165, May.
- Brown, Timothy C. & Xia, Aihua, 1995. "On Stein-Chen factors for Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 23(4), pages 327-332, June.
- Xia, Aihua & Zhang, Fuxi, 2008. "A polynomial birth-death point process approximation to the Bernoulli process," Stochastic Processes and their Applications, Elsevier, vol. 118(7), pages 1254-1263, July.
More about this item
Keywords
Brownian flow Poisson (Cox) process Stationarity;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:66:y:1997:i:2:p:183-207. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.