IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v87y2000i1p149-165.html
   My bibliography  Save this article

Removing logarithms from Poisson process error bounds

Author

Listed:
  • Brown, Timothy C.
  • Weinberg, Graham V.
  • Xia, Aihua

Abstract

We present a new approximation theorem for estimating the error in approximating the whole distribution of a finite-point process by a suitable Poisson process. The metric used for this purpose regards the distributions as close if there are couplings of the processes with the expected average distance between points small in the best-possible matching. In many cases, the new bounds remain constant as the mean of the process increases, in contrast to previous results which, at best, increase logarithmically with the mean. Applications are given to Bernoulli-type point processes and to networks of queues. In these applications the bounds are independent of time and space, only depending on parameters of the system under consideration. Such bounds may be important in analysing properties, such as queueing parameters which depend on the whole distribution and not just the distribution of the number of points in a particular set.

Suggested Citation

  • Brown, Timothy C. & Weinberg, Graham V. & Xia, Aihua, 2000. "Removing logarithms from Poisson process error bounds," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 149-165, May.
  • Handle: RePEc:eee:spapps:v:87:y:2000:i:1:p:149-165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00108-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbour, A. D. & Brown, T. C., 1992. "Stein's method and point process approximation," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 9-31, November.
    2. Brown, Timothy C. & Xia, Aihua, 1995. "On Stein-Chen factors for Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 23(4), pages 327-332, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong, Tianshu & Xia, Aihua & Zhang, Fuxi, 2020. "A large sample property in approximating the superposition of i.i.d. finite point processes," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4493-4511.
    2. Schuhmacher, Dominic, 2005. "Distance estimates for dependent superpositions of point processes," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1819-1837, November.
    3. Xia, Aihua & Zhang, Fuxi, 2008. "A polynomial birth-death point process approximation to the Bernoulli process," Stochastic Processes and their Applications, Elsevier, vol. 118(7), pages 1254-1263, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Shengwu & Xia, Aihua, 1997. "On poisson approximation to the partial sum process of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 101-111, May.
    2. Schulte, Matthias & Thäle, Christoph, 2012. "The scaling limit of Poisson-driven order statistics with applications in geometric probability," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 4096-4120.
    3. Schuhmacher, Dominic, 2005. "Distance estimates for dependent superpositions of point processes," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1819-1837, November.
    4. Gan, H.L. & Xia, A., 2015. "Stein’s method for conditional compound Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 19-26.
    5. Brown, Timothy C. & Xia, Aihua, 1995. "On Stein-Chen factors for Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 23(4), pages 327-332, June.
    6. Phelan, Michael J., 1997. "Approach to stationarity for birth and death on flows," Stochastic Processes and their Applications, Elsevier, vol. 66(2), pages 183-207, March.
    7. Xia, Aihua & Zhang, Fuxi, 2008. "A polynomial birth-death point process approximation to the Bernoulli process," Stochastic Processes and their Applications, Elsevier, vol. 118(7), pages 1254-1263, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:87:y:2000:i:1:p:149-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.