IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v83y1999i1p61-77.html
   My bibliography  Save this article

On local asymptotic normality for birth and death on a flow

Author

Listed:
  • Höpfner, R.
  • Löcherbach, E.

Abstract

We consider statistical models for birth and death on a flow and prove local asymptotic normality as the observation time approaches infinity; as a consequence, we know how to characterize asymptotically efficient estimators for the unknown parameter. We construct a sequence of minimum distance estimators based on observed death positions which is strongly consistent and asymptotically normal, and improve it to get an efficient estimator for a parameter present in the death rate function.

Suggested Citation

  • Höpfner, R. & Löcherbach, E., 1999. "On local asymptotic normality for birth and death on a flow," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 61-77, September.
  • Handle: RePEc:eee:spapps:v:83:y:1999:i:1:p:61-77
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00022-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phelan, Michael J., 1994. "A quasi likelihood for integral data on birth and death on flows," Stochastic Processes and their Applications, Elsevier, vol. 53(2), pages 379-392, October.
    2. Cremers, Heinz & Kadelka, Dieter, 1986. "On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in LEP," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 305-317, February.
    3. Phelan, Michael J., 1997. "Approach to stationarity for birth and death on flows," Stochastic Processes and their Applications, Elsevier, vol. 66(2), pages 183-207, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Löcherbach, 2002. "Likelihood Ratio Processes for Markovian Particle Systems with Killing and Jumps," Statistical Inference for Stochastic Processes, Springer, vol. 5(2), pages 153-177, May.
    2. R. HÖpfner & E. LÖcherbach, 1998. "Birth and Death on a Flow: Local Time and Estimation of a Position‐Dependent Death Rate," Statistical Inference for Stochastic Processes, Springer, vol. 1(3), pages 225-243, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    2. Karim M. Abadir & Walter Distaso & Liudas Giraitis, 2011. "An I() model with trend and cycles," Post-Print hal-00834425, HAL.
    3. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    4. E. Löcherbach, 2002. "Likelihood Ratio Processes for Markovian Particle Systems with Killing and Jumps," Statistical Inference for Stochastic Processes, Springer, vol. 5(2), pages 153-177, May.
    5. Aue, Alexander & Van Delft, Anne, 2017. "Testing for stationarity of functional time series in the frequency domain," LIDAM Discussion Papers ISBA 2017001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Höpfner Reinhard & Kutoyants Yury A., 2009. "On LAN for parametrized continuous periodic signals in a time inhomogeneous diffusion," Statistics & Risk Modeling, De Gruyter, vol. 27(4), pages 309-326, December.
    7. R. HÖpfner & E. LÖcherbach, 1998. "Birth and Death on a Flow: Local Time and Estimation of a Position‐Dependent Death Rate," Statistical Inference for Stochastic Processes, Springer, vol. 1(3), pages 225-243, October.
    8. James Cameron & Pramita Bagchi, 2022. "A test for heteroscedasticity in functional linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 519-542, June.
    9. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2011. "An I(d) model with trend and cycles," Journal of Econometrics, Elsevier, vol. 163(2), pages 186-199, August.
    10. Mathias Mørck Ljungdahl & Mark Podolskij, 2020. "A minimal contrast estimator for the linear fractional stable motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 381-413, July.
    11. Oliveira, P. E. & Suquet, Ch., 1998. "Weak convergence in Lp(0,1) of the uniform empirical process under dependence," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 363-370, August.
    12. Kao, John & Cinlar, Erhan, 1998. "Spectral expansion of the occupation measure for birth and death on a flow," Stochastic Processes and their Applications, Elsevier, vol. 74(2), pages 203-215, June.
    13. Düker, Marie-Christine, 2018. "Limit theorems for Hilbert space-valued linear processes under long range dependence," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1439-1465.
    14. Alfredas Račkauskas & Charles Suquet, 2023. "Asymptotic Normality in Banach Spaces via Lindeberg Method," Journal of Theoretical Probability, Springer, vol. 36(1), pages 409-455, March.
    15. Characiejus, Vaidotas & Račkauskas, Alfredas, 2014. "Operator self-similar processes and functional central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2605-2627.
    16. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2015. "Classical Laplace estimation for n3-consistent estimators: Improved convergence rates and rate-adaptive inference," Journal of Econometrics, Elsevier, vol. 187(1), pages 201-216.
    17. repec:hal:journl:peer-00834425 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:83:y:1999:i:1:p:61-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.