IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v55y1995i2p285-300.html
   My bibliography  Save this article

Characterization of discrete laws via mixed sums and Markov branching processes

Author

Listed:
  • Pakes, Anthony G.

Abstract

Let (Zt) be a subordinator independent of 0

Suggested Citation

  • Pakes, Anthony G., 1995. "Characterization of discrete laws via mixed sums and Markov branching processes," Stochastic Processes and their Applications, Elsevier, vol. 55(2), pages 285-300, February.
  • Handle: RePEc:eee:spapps:v:55:y:1995:i:2:p:285-300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(94)00049-Y
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony Pakes, 1994. "Necessary conditions for characterization of laws via mixed sums," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 797-802, December.
    2. Devroye, Luc, 1990. "A note on linnik's distribution," Statistics & Probability Letters, Elsevier, vol. 9(4), pages 305-306, April.
    3. A.G. Pakes, 1992. "A characterization of gamma mixtures of stable laws motivated by limit theorems," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 46(2‐3), pages 209-218, July.
    4. van Harn, K. & Steutel, F.W., 1993. "Stability equations for processes with stationary independent increments using branching processes and Poisson mixtures," Stochastic Processes and their Applications, Elsevier, vol. 45(2), pages 209-230, April.
    5. R. Pillai, 1990. "On Mittag-Leffler functions and related distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(1), pages 157-161, March.
    6. Devroye, Luc, 1993. "A triptych of discrete distributions related to the stable law," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 349-351, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludwig Baringhaus & Rudolf Grübel, 1997. "On a Class of Characterization Problems for Random Convex Combinations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 555-567, September.
    2. Lucio Barabesi & Luca Pratelli, 2014. "Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 345-351, August.
    3. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    4. Emad-Eldin Aly & Nadjib Bouzar, 2003. "On discrete α-unimodality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 523-535, September.
    5. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "A generalized Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 855-887, August.
    6. Buddana Amrutha & Kozubowski Tomasz J., 2014. "Discrete Pareto Distributions," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 143-156, December.
    7. Lucio Barabesi & Carolina Becatti & Marzia Marcheselli, 2018. "The Tempered Discrete Linnik distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 45-68, March.
    8. Sapatinas, Theofanis, 1999. "A characterization of the negative binomial distribution via [alpha]-monotonicity," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 49-53, October.
    9. Rémillard Bruno & Theodorescu Radu, 2000. "Inference Based On The Empirical Probability Generating Function For Mixtures Of Poisson Distributions," Statistics & Risk Modeling, De Gruyter, vol. 18(4), pages 349-366, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sapatinas, Theofanis, 1995. "Characterizations of probability distributions based on discrete p-monotonicity," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 339-344, September.
    2. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    3. Yury Khokhlov & Victor Korolev & Alexander Zeifman, 2020. "Multivariate Scale-Mixed Stable Distributions and Related Limit Theorems," Mathematics, MDPI, vol. 8(5), pages 1-29, May.
    4. Kozubowski, Tomasz J., 1998. "Mixture representation of Linnik distribution revisited," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 157-160, June.
    5. Ludwig Baringhaus & Rudolf Grübel, 1997. "On a Class of Characterization Problems for Random Convex Combinations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 555-567, September.
    6. Pakes, Anthony G., 1998. "Mixture representations for symmetric generalized Linnik laws," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 213-221, March.
    7. Thierry E. Huillet, 2020. "On New Mechanisms Leading to Heavy-Tailed Distributions Related to the Ones Of Yule-Simon," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 321-344, March.
    8. Kotz, Samuel & Ostrovskii, I. V., 1996. "A mixture representation of the Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 26(1), pages 61-64, January.
    9. Masanao Aoki, 2006. "Thermodynamic Limits of Macroeconomic or Financial Models: One-and Two-Parameter Poisson-Dirichlet Models (Forthcoming in "Journal of Economic Dynamics and Control", 2007. )," CARF F-Series CARF-F-083, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    11. Emad-Eldin Aly & Nadjib Bouzar, 2000. "On Geometric Infinite Divisibility and Stability," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 790-799, December.
    12. Weron, Rafal, 1996. "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 165-171, June.
    13. Levy, Edmond, 2021. "On the density for sums of independent Mittag-Leffler variates with common order," Statistics & Probability Letters, Elsevier, vol. 179(C).
    14. Oncel, Sevgi Yurt & Ahsanullah, Mohammad & Aliev, Fazil A. & Aygun, Funda, 2005. "Switching record and order statistics via random contractions," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 207-217, July.
    15. Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 89-91, August.
    16. Buddana Amrutha & Kozubowski Tomasz J., 2014. "Discrete Pareto Distributions," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 143-156, December.
    17. Orsingher, Enzo & Polito, Federico, 2012. "The space-fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 852-858.
    18. Michael Grabchak, 2022. "Discrete Tempered Stable Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1877-1890, September.
    19. Nadjib Bouzar, 2008. "The semi-Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 459-464, June.
    20. Masanao Aoki & Hiroshi Yoshikawa, 2012. "Non-self-averaging in macroeconomic models: a criticism of modern micro-founded macroeconomics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(1), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:55:y:1995:i:2:p:285-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.