IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v179y2021ics0167715221001735.html
   My bibliography  Save this article

On the density for sums of independent Mittag-Leffler variates with common order

Author

Listed:
  • Levy, Edmond

Abstract

This note demonstrates a convenient approach to finding the density for the sum of independent Mittag-Leffler distributed random variables when they share a common order. The approach uses a well-known integral relation of the Mittag-Leffler function which lends itself to a divided difference interpretation for the convolution of such functions.

Suggested Citation

  • Levy, Edmond, 2021. "On the density for sums of independent Mittag-Leffler variates with common order," Statistics & Probability Letters, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:stapro:v:179:y:2021:i:c:s0167715221001735
    DOI: 10.1016/j.spl.2021.109211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221001735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Pillai, 1990. "On Mittag-Leffler functions and related distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(1), pages 157-161, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    2. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    3. Emad-Eldin Aly & Nadjib Bouzar, 2000. "On Geometric Infinite Divisibility and Stability," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 790-799, December.
    4. Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 89-91, August.
    5. Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
    6. Sánchez, Ewin, 2019. "Burr type-XII as a superstatistical stationary distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 443-446.
    7. Rahma Abid & Célestin C. Kokonendji & Afif Masmoudi, 2020. "Geometric Tweedie regression models for continuous and semicontinuous data with variation phenomenon," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 33-58, March.
    8. Kozubowski, Tomasz J., 1998. "Mixture representation of Linnik distribution revisited," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 157-160, June.
    9. Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 343-345, July.
    10. Cho, Soobin & Kim, Panki, 2021. "Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 229-279.
    11. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    12. Pillai, R. N. & Jayakumar, K., 1995. "Discrete Mittag-Leffler distributions," Statistics & Probability Letters, Elsevier, vol. 23(3), pages 271-274, May.
    13. Tomasz Kozubowski, 2000. "Exponential Mixture Representation of Geometric Stable Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 231-238, June.
    14. Agahi, Hamzeh & Alipour, Mohsen, 2019. "Mittag-Leffler-Gaussian distribution: Theory and application to real data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 227-235.
    15. Agahi, Hamzeh & Alipour, Mohsen, 2020. "Tsallis–Mittag-Leffler distribution and its applications in gas prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    16. O. E. Barndorff-Nielsen & N. N. Leonenko, 2005. "Spectral Properties of Uperpositions of Ornstein-Uhlenbeck Type Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(3), pages 335-352, September.
    17. Mirko D’Ovidio & Federico Polito, 2014. "Discussion on the paper “On simulation and properties of the stable law” by L. Devroye and L. James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 359-363, August.
    18. Chunsheng Ma, 2013. "Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 941-958, October.
    19. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    20. Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:179:y:2021:i:c:s0167715221001735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.