IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v450y2023ics0096300323001480.html
   My bibliography  Save this article

BSDEs generated by fractional space-time noise and related SPDEs

Author

Listed:
  • Hu, Yaozhong
  • Li, Juan
  • Mi, Chao

Abstract

This paper is concerned with the backward stochastic differential equations whose generator is a weighted fractional Brownian field: Yt=ξ+∫tTYsW(ds,Bs)−∫tTZsdBs, 0≤t≤T, where W is a (d+1)-parameter weighted fractional Brownian field of Hurst parameter H=(H0,H1,⋯,Hd), which provide probabilistic interpretations (Feynman-Kac formulas) for certain linear stochastic partial differential equations with colored space-time noise. Conditions on the Hurst parameter H and on the decay rate of the weight are given to ensure the existence and uniqueness of the solution pair. Moreover, the explicit expression for both components Y and Z of the solution pair is given.

Suggested Citation

  • Hu, Yaozhong & Li, Juan & Mi, Chao, 2023. "BSDEs generated by fractional space-time noise and related SPDEs," Applied Mathematics and Computation, Elsevier, vol. 450(C).
  • Handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001480
    DOI: 10.1016/j.amc.2023.127979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Bally & A. Matoussi, 2001. "Weak Solutions for SPDEs and Backward Doubly Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 14(1), pages 125-164, January.
    2. Anis Matoussi & Michael Scheutzow, 2002. "Stochastic PDEs Driven by Nonlinear Noise and Backward Doubly SDEs," Journal of Theoretical Probability, Springer, vol. 15(1), pages 1-39, January.
    3. Buckdahn, Rainer & Ma, Jin, 2001. "Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part II," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 205-228, June.
    4. Buckdahn, Rainer & Ma, Jin, 2001. "Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part I," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 181-204, June.
    5. Hu, Yaozhong & Nualart, David & Song, Jian, 2013. "A nonlinear stochastic heat equation: Hölder continuity and smoothness of the density of the solution," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1083-1103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ying & Wen, Jiaqiang & Xiong, Jie, 2024. "Backward doubly stochastic differential equations and SPDEs with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    2. Aman, Auguste & Mrhardy, Naoul, 2013. "Obstacle problem for SPDE with nonlinear Neumann boundary condition via reflected generalized backward doubly SDEs," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 863-874.
    3. Neeraj Bhauryal & Ana Bela Cruzeiro & Carlos Oliveira, 2024. "Pathwise Stochastic Control and a Class of Stochastic Partial Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1967-1990, November.
    4. Matoussi Anis & Sabbagh Wissal, 2016. "Numerical computation for backward doubly SDEs with random terminal time," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 229-258, September.
    5. Francesco, MENONCIN, 2002. "Investment Strategies in Incomplete Markets : Sufficient Conditions for a Closed Form Solution," LIDAM Discussion Papers IRES 2002033, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    6. Matoussi, A. & Piozin, L. & Popier, A., 2017. "Stochastic partial differential equations with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 831-876.
    7. Xanthi-Isidora Kartala & Nikolaos Englezos & Athanasios N. Yannacopoulos, 2020. "Future Expectations Modeling, Random Coefficient Forward–Backward Stochastic Differential Equations, and Stochastic Viscosity Solutions," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 403-433, May.
    8. Marcel Nutz, 2011. "A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations," Papers 1106.3273, arXiv.org, revised May 2012.
    9. Matoussi, Anis & Sabbagh, Wissal & Zhang, Tusheng, 2017. "Backward doubly SDEs and semilinear stochastic PDEs in a convex domain," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2781-2815.
    10. Francesco, MENONCIN, 2002. "Investment Strategies for HARA Utility Function : A General Algebraic Approximated Solution," LIDAM Discussion Papers IRES 2002034, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    11. Keller, Christian & Zhang, Jianfeng, 2016. "Pathwise Itô calculus for rough paths and rough PDEs with path dependent coefficients," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 735-766.
    12. Tomasz Klimsiak, 2013. "On Time-Dependent Functionals of Diffusions Corresponding to Divergence Form Operators," Journal of Theoretical Probability, Springer, vol. 26(2), pages 437-473, June.
    13. Qi Zhang & Huaizhong Zhao, 2012. "Probabilistic Representation of Weak Solutions of Partial Differential Equations with Polynomial Growth Coefficients," Journal of Theoretical Probability, Springer, vol. 25(2), pages 396-423, June.
    14. Qikang Ran & Tusheng Zhang, 2010. "Existence and Uniqueness of Bounded Weak Solutions of a Semilinear Parabolic PDE," Journal of Theoretical Probability, Springer, vol. 23(4), pages 951-971, December.
    15. Anis Matoussi & Michael Scheutzow, 2002. "Stochastic PDEs Driven by Nonlinear Noise and Backward Doubly SDEs," Journal of Theoretical Probability, Springer, vol. 15(1), pages 1-39, January.
    16. Zhang, Bin & Yao, Zhigang & Liu, Junfeng, 2023. "On a class of mixed stochastic heat equations driven by spatially homogeneous Gaussian noise," Statistics & Probability Letters, Elsevier, vol. 196(C).
    17. Buckdahn, Rainer & Ma, Jin, 2001. "Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part I," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 181-204, June.
    18. Li, Kexue, 2017. "Hölder continuity for stochastic fractional heat equation with colored noise," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 34-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.