IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v69y2017i5d10.1007_s10463-016-0577-6.html
   My bibliography  Save this article

Moment convergence of regularized least-squares estimator for linear regression model

Author

Listed:
  • Yusuke Shimizu

    (Kyushu University)

Abstract

In this paper, we study the uniform tail-probability estimates of a regularized least-squares estimator for the linear regression model. We make use of the polynomial type large deviation inequality for the associated statistical random fields, which may not be locally asymptotically quadratic. Our results enable us to verify various arguments requiring convergence of moments of estimator-dependent statistics, such as the mean squared prediction error and the bias correction for AIC-type information criterion.

Suggested Citation

  • Yusuke Shimizu, 2017. "Moment convergence of regularized least-squares estimator for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1141-1154, October.
  • Handle: RePEc:spr:aistmt:v:69:y:2017:i:5:d:10.1007_s10463-016-0577-6
    DOI: 10.1007/s10463-016-0577-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-016-0577-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-016-0577-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakahiro Yoshida, 2011. "Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 431-479, June.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Yuji Sakamoto & Nakahiro Yoshida, 2004. "Asymptotic expansion formulas for functionals of ε-Markov processes with a mixing property," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 545-597, September.
    4. Masayuki Uchida & Nakahiro Yoshida, 2001. "Information Criteria in Model Selection for Mixing Processes," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 73-98, January.
    5. Findley, David F. & Wei, Ching-Zong, 2002. "AIC, Overfitting Principles, and the Boundedness of Moments of Inverse Matrices for Vector Autotregressions and Related Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 415-450, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoichi Eguchi & Hiroki Masuda, 2019. "Data driven time scale in Gaussian quasi-likelihood inference," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 383-430, October.
    2. Yuji Sakamoto & Nakahiro Yoshida, 2009. "Third-order asymptotic expansion of M-estimators for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 629-661, September.
    3. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    4. Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
    5. Masatoshi Goda, 2023. "Sparse estimation for generalized exponential marked Hawkes process," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 139-169, April.
    6. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    7. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
    8. Tudor, Ciprian A. & Yoshida, Nakahiro, 2023. "High order asymptotic expansion for Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 443-492.
    9. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    10. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
    11. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    12. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    13. Takayuki Fujii & Masayuki Uchida, 2014. "AIC type statistics for discretely observed ergodic diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 267-282, October.
    14. Nakahiro Yoshida, 2011. "Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 431-479, June.
    15. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
    16. Stefano Maria IACUS & Alessandro DE GREGORIO, 2010. "Adaptive LASSO-type estimation for ergodic diffusion processes," Departmental Working Papers 2010-13, Department of Economics, Management and Quantitative Methods at UniversitĂ  degli Studi di Milano.
    17. Yoshida, Nakahiro, 2013. "Martingale expansion in mixed normal limit," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 887-933.
    18. Masayuki Uchida, 2010. "Contrast-based information criterion for ergodic diffusion processes from discrete observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 161-187, February.
    19. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
    20. Masayuki Uchida & Nakahiro Yoshida, 2014. "Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 181-219, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:69:y:2017:i:5:d:10.1007_s10463-016-0577-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.