IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v26y1987ip317-332.html
   My bibliography  Save this article

A propagation of chaos result for a system of particles with moderate interaction

Author

Listed:
  • Meleard, Sylvie
  • Roelly-Coppoletta, Sylvie

Abstract

This paper is concerned with the asymptotic behaviour of a system of particles with moderate interaction. The main result is a propagation of chaos result which generalizes a convergence result of Oelschläger. A trajectorial propagation of chaos result is also given.

Suggested Citation

  • Meleard, Sylvie & Roelly-Coppoletta, Sylvie, 1987. "A propagation of chaos result for a system of particles with moderate interaction," Stochastic Processes and their Applications, Elsevier, vol. 26, pages 317-332.
  • Handle: RePEc:eee:spapps:v:26:y:1987:i::p:317-332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(87)90184-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jourdain, B., 1998. "Convergence of moderately interacting particle systems to a diffusion-convection equation," Stochastic Processes and their Applications, Elsevier, vol. 73(2), pages 247-270, March.
    2. Crucinio, Francesca R. & De Bortoli, Valentin & Doucet, Arnaud & Johansen, Adam M., 2024. "Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    3. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    4. Belaribi, Nadia & Cuvelier, François & Russo, Francesco, 2011. "A probabilistic algorithm approximating solutions of a singular PDE of porous media type," Monte Carlo Methods and Applications, De Gruyter, vol. 17(4), pages 317-369, December.
    5. Bossy, Mireille & Talay, Denis, 1995. "A stochastic particle method for some one-dimensional nonlinear p.d.e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 43-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:26:y:1987:i::p:317-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.