IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v173y2024ics0304414924000620.html
   My bibliography  Save this article

On the orthogonality of zero-mean Gaussian measures: Sufficiently dense sampling

Author

Listed:
  • Furrer, Reinhard
  • Hediger, Michael

Abstract

For a stationary random function ξ, sampled on a subset D of Rd, we examine the equivalence and orthogonality of two zero-mean Gaussian measures P1 and P2 associated with ξ. We give the isotropic analog to the result that the equivalence of P1 and P2 is linked with the existence of a square-integrable extension of the difference between the covariance functions of P1 and P2 from D to Rd. We show that the orthogonality of P1 and P2 can be recovered when the set of distances from points of D to the origin is dense in the set of non-negative real numbers.

Suggested Citation

  • Furrer, Reinhard & Hediger, Michael, 2024. "On the orthogonality of zero-mean Gaussian measures: Sufficiently dense sampling," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000620
    DOI: 10.1016/j.spa.2024.104356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    2. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    3. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    4. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    5. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    6. Colin Lewis-Beck & Zhengyuan Zhu & Victoria Walker & Brian Hornbuckle, 2020. "Modeling Crop Phenology in the US Corn Belt Using Spatially Referenced SMOS Satellite Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 657-675, December.
    7. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    8. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    9. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    10. Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.
    11. R. S. Fagundes & M. A. Uribe-Opazo & M. Galea & L. P. C. Guedes, 2018. "Spatial Variability in Slash Linear Modeling with Finite Second Moment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 276-296, June.
    12. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    13. Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
    14. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    15. Lecomte, J.B. & Benoît, H.P. & Etienne, M.P. & Bel, L. & Parent, E., 2013. "Modeling the habitat associations and spatial distribution of benthic macroinvertebrates: A hierarchical Bayesian model for zero-inflated biomass data," Ecological Modelling, Elsevier, vol. 265(C), pages 74-84.
    16. Denis Allard & Lucia Clarotto & Thomas Opitz & Thomas Romary, 2021. "Discussion on “Competition on Spatial Statistics for Large Datasets”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 604-611, December.
    17. Benjamin M. Taylor & Ricardo Andrade‐Pacheco & Hugh J. W. Sturrock, 2018. "Continuous inference for aggregated point process data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1125-1150, October.
    18. Gelfand, Alan E. & Banerjee, Sudipto & Sirmans, C.F. & Tu, Yong & Eng Ong, Seow, 2007. "Multilevel modeling using spatial processes: Application to the Singapore housing market," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3567-3579, April.
    19. Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.
    20. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.