IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v171y2024ics030441492400022x.html
   My bibliography  Save this article

The importance Markov chain

Author

Listed:
  • Andral, Charly
  • Douc, Randal
  • Marival, Hugo
  • Robert, Christian P.

Abstract

The Importance Markov chain is a novel algorithm bridging the gap between rejection sampling and importance sampling, moving from one to the other through a tuning parameter. Based on a modified sample of an instrumental Markov chain targeting an instrumental distribution (typically via a MCMC kernel), the Importance Markov chain produces an extended Markov chain where the marginal distribution of the first component converges to the target distribution. For example, when targeting a multimodal distribution, the instrumental distribution can be chosen as a tempered version of the target which allows the algorithm to explore its modes more efficiently. We obtain a Law of Large Numbers and a Central Limit Theorem as well as geometric ergodicity for this extended kernel under mild assumptions on the instrumental kernel. Computationally, the algorithm is easy to implement and preexisting librairies can be used to sample from the instrumental distribution.

Suggested Citation

  • Andral, Charly & Douc, Randal & Marival, Hugo & Robert, Christian P., 2024. "The importance Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:spapps:v:171:y:2024:i:c:s030441492400022x
    DOI: 10.1016/j.spa.2024.104316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492400022X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. Raices Cruz, Ivette & Lindström, Johan & Troffaes, Matthias C.M. & Sahlin, Ullrika, 2022. "Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    3. Liu J. S & Liang F. & Wong W.H., 2001. "A Theory for Dynamic Weighting in Monte Carlo Computation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 561-573, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    2. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    3. Agata Boratyńska, 2021. "Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 123-140, September.
    4. Congdon, Peter, 2008. "A bivariate frailty model for events with a permanent survivor fraction and non-monotonic hazards; with an application to age at first maternity," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4346-4356, May.
    5. Radhakanta Das & Vivek Verma & Dilip C. Nath, 2017. "Bayesian Estimation Of Measles Vaccination Coverage Under Ranked Set Sampling," Statistics in Transition New Series, Polish Statistical Association, vol. 18(4), pages 589-608, December.
    6. Giacomini, Raffaella & Kitagawa, Toru & Read, Matthew, 2021. "Robust Bayesian Analysis for Econometrics," CEPR Discussion Papers 16488, C.E.P.R. Discussion Papers.
    7. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    8. Chamberlain, Gary, 2000. "Econometrics and decision theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 255-283, April.
    9. Gomez-Deniz, E. & Hernandez-Bastida, A. & Vazquez-Polo, F. J., 1999. "The Esscher premium principle in risk theory: a Bayesian sensitivity study," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 387-395, December.
    10. Pérez-Hornero, Patricia & Arias-Nicolás, José Pablo & Pulgarín, Antonio A. & Pulgarín, Antonio, 2013. "An annual JCR impact factor calculation based on Bayesian credibility formulas," Journal of Informetrics, Elsevier, vol. 7(1), pages 1-9.
    11. Das Radhakanta & Verma Vivek & Nath Dilip C., 2017. "Bayesian Estimation of Measles Vaccination Coverage Under Ranked Set Sampling," Statistics in Transition New Series, Statistics Poland, vol. 18(4), pages 589-608, December.
    12. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    13. Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
    14. Henkel, Luca, 2024. "Experimental evidence on the relationship between perceived ambiguity and likelihood insensitivity," Games and Economic Behavior, Elsevier, vol. 145(C), pages 312-338.
    15. Sinha, Pankaj & Jayaraman, Prabha, 2009. "Robustness of Bayesian results for Inverse Gaussian distribution under ML-II epsilon-contaminated and Edgeworth Series class of prior distributions," MPRA Paper 15396, University Library of Munich, Germany.
    16. Sinha, Pankaj & Jayaraman, Prabha, 2010. "Robustness of Bayes decisions for normal and lognormal distributions under hierarchical priors," MPRA Paper 22416, University Library of Munich, Germany.
    17. Ali Karimnezhad & Mahmoud Zarepour, 2020. "A general guide in Bayesian and robust Bayesian estimation using Dirichlet processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 321-346, April.
    18. A.Hernández-Bastida & J. M. Pérez–Sánchez & E. Gómez-Deniz, 2007. "Bayesian Analysis Of The Compound Collective Model: The Net Premium Principle With Exponential Poisson And Gamma–Gamma Distributions," FEG Working Paper Series 07/03, Faculty of Economics and Business (University of Granada).
    19. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    20. Gómez Déniz, E. & Pérez Sánchez, J. M., 2001. "Fijación de primas de seguros bajo técnicas de robustez bayesiana," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 5-20, Diciembre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:171:y:2024:i:c:s030441492400022x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.