IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v149y2022icp404-426.html
   My bibliography  Save this article

Limit theorems for Hawkes processes including inhibition

Author

Listed:
  • Cattiaux, Patrick
  • Colombani, Laetitia
  • Costa, Manon

Abstract

In this paper we consider some non linear Hawkes processes with signed reproduction function (or memory kernel) thus exhibiting both self-excitation and inhibition. We provide a Law of Large Numbers, a Central Limit Theorem and large deviation results, as time growths to infinity. The proofs lie on a renewal structure for these processes introduced in Costa et al. (2020) which leads to a comparison with cumulative processes. Explicit computations are made on some examples. Similar results have been obtained in the literature for self-exciting Hawkes processes only.

Suggested Citation

  • Cattiaux, Patrick & Colombani, Laetitia & Costa, Manon, 2022. "Limit theorems for Hawkes processes including inhibition," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 404-426.
  • Handle: RePEc:eee:spapps:v:149:y:2022:i:c:p:404-426
    DOI: 10.1016/j.spa.2022.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922000837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
    2. Lefevere, Raphaël & Mariani, Mauro & Zambotti, Lorenzo, 2011. "Large deviations for renewal processes," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2243-2271, October.
    3. Xuefeng Gao & Lingjiong Zhu, 2018. "Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 161-206, October.
    4. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    5. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    6. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Post-Print hal-01313994, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aur'elien Alfonsi, 2023. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Papers 2302.07758, arXiv.org, revised Oct 2024.
    2. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    3. Cattiaux, Patrick & Colombani, Laetitia & Costa, Manon, 2023. "Asymptotic deviation bounds for cumulative processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 85-105.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bo & Pang, Guodong, 2022. "Functional limit theorems for nonstationary marked Hawkes processes in the high intensity regime," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 285-339.
    2. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    3. Heidar Eyjolfsson & Dag Tjøstheim, 2018. "Self-exciting jump processes with applications to energy markets," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 373-393, April.
    4. Raviar Karim & Roger J. A. Laeven & Michel Mandjes, 2021. "Exact and Asymptotic Analysis of General Multivariate Hawkes Processes and Induced Population Processes," Papers 2106.03560, arXiv.org.
    5. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    6. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    7. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    8. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    9. Duval, Céline & Luçon, Eric & Pouzat, Christophe, 2022. "Interacting Hawkes processes with multiplicative inhibition," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 180-226.
    10. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    11. Nikolaus Graf von Luckner & Rüdiger Kiesel, 2021. "Modeling Market Order Arrivals on the German Intraday Electricity Market with the Hawkes Process," JRFM, MDPI, vol. 14(4), pages 1-31, April.
    12. Wang, Haixu, 2022. "Limit theorems for a discrete-time marked Hawkes process," Statistics & Probability Letters, Elsevier, vol. 184(C).
    13. Takeuchi, Atsushi, 2019. "Integration by parts formulas for marked Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 229-237.
    14. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    15. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    16. Ma, Yong & Pan, Dongtao & Shrestha, Keshab & Xu, Weidong, 2020. "Pricing and hedging foreign equity options under Hawkes jump–diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    17. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    18. Takaki Hayashi & Yuta Koike, 2016. "Wavelet-based methods for high-frequency lead-lag analysis," Papers 1612.01232, arXiv.org, revised Nov 2018.
    19. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:149:y:2022:i:c:p:404-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.