IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v143y2022icp1-30.html
   My bibliography  Save this article

Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise

Author

Listed:
  • Cialenco, Igor
  • Kim, Hyun-Jung

Abstract

We derive consistent and asymptotically normal estimators for the drift and volatility parameters of the stochastic heat equation driven by an additive space-only white noise when the solution is sampled discretely in the physical domain. We consider both the full space and the bounded domain. We establish the exact spatial regularity of the solution, which in turn, using power-variation arguments, allows building the desired estimators. We show that naive approximations of the derivatives appearing in the power-variation based estimators may create nontrivial biases, which we compute explicitly. The proofs are rooted in Malliavin–Stein’s method.

Suggested Citation

  • Cialenco, Igor & Kim, Hyun-Jung, 2022. "Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 1-30.
  • Handle: RePEc:eee:spapps:v:143:y:2022:i:c:p:1-30
    DOI: 10.1016/j.spa.2021.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921001605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igor Cialenco, 2018. "Statistical inference for SPDEs: an overview," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 309-329, July.
    2. Bibinger, Markus & Trabs, Mathias, 2020. "Volatility estimation for stochastic PDEs using high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3005-3052.
    3. Igor Cialenco & Sergey Lototsky, 2009. "Parameter estimation in diagonalizable bilinear stochastic parabolic equations," Statistical Inference for Stochastic Processes, Springer, vol. 12(3), pages 203-219, October.
    4. Igor Cialenco & Hyun-Jung Kim & Sergey V. Lototsky, 2020. "Statistical analysis of some evolution equations driven by space-only noise," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 83-103, April.
    5. Cialenco, Igor & Glatt-Holtz, Nathan, 2011. "Parameter estimation for the stochastically perturbed Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 701-724, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
    2. Janák, Josef & Reiß, Markus, 2024. "Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    3. Benth, Fred Espen & Schroers, Dennis & Veraart, Almut E.D., 2022. "A weak law of large numbers for realised covariation in a Hilbert space setting," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 241-268.
    4. Cheng, Ziteng & Cialenco, Igor & Gong, Ruoting, 2020. "Bayesian estimations for diagonalizable bilinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 845-877.
    5. Igor Cialenco, 2018. "Statistical inference for SPDEs: an overview," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 309-329, July.
    6. Igor Cialenco & Ruoting Gong & Yicong Huang, 2018. "Trajectory fitting estimators for SPDEs driven by additive noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 1-19, April.
    7. Igor Cialenco & Hyun-Jung Kim & Sergey V. Lototsky, 2020. "Statistical analysis of some evolution equations driven by space-only noise," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 83-103, April.
    8. Dennis Schroers, 2024. "Robust Functional Data Analysis for Stochastic Evolution Equations in Infinite Dimensions," Papers 2401.16286, arXiv.org, revised Jun 2024.
    9. Bibinger, Markus & Trabs, Mathias, 2020. "Volatility estimation for stochastic PDEs using high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3005-3052.
    10. di Nunno, Giulia & Ortiz–Latorre, Salvador & Petersson, Andreas, 2023. "SPDE bridges with observation noise and their spatial approximation," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 170-207.
    11. Pavel Kříž & Leszek Szała, 2020. "The Combined Estimator for Stochastic Equations on Graphs with Fractional Noise," Mathematics, MDPI, vol. 8(10), pages 1-21, October.
    12. Cialenco, Igor & Xu, Liaosha, 2015. "Hypothesis testing for stochastic PDEs driven by additive noise," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 819-866.
    13. Patrick Bossert, 2024. "Parameter estimation for second-order SPDEs in multiple space dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 485-583, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:143:y:2022:i:c:p:1-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.