IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i1d10.1007_s11203-016-9152-2.html
   My bibliography  Save this article

Trajectory fitting estimators for SPDEs driven by additive noise

Author

Listed:
  • Igor Cialenco

    (Illinois Institute of Technology)

  • Ruoting Gong

    (Illinois Institute of Technology)

  • Yicong Huang

    (Illinois Institute of Technology)

Abstract

In this paper we study the problem of estimating the drift/viscosity coefficient for a large class of linear, parabolic stochastic partial differential equations (SPDEs) driven by an additive space-time noise. We propose a new class of estimators, called trajectory fitting estimators (TFEs). The estimators are constructed by fitting the observed trajectory with an artificial one, and can be viewed as an analog to the classical least squares estimators from the time-series analysis. As in the existing literature on statistical inference for SPDEs, we take a spectral approach, and assume that we observe the first N Fourier modes of the solution, and we study the consistency and the asymptotic normality of the TFE, as $$N\rightarrow \infty $$ N → ∞ .

Suggested Citation

  • Igor Cialenco & Ruoting Gong & Yicong Huang, 2018. "Trajectory fitting estimators for SPDEs driven by additive noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 1-19, April.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:1:d:10.1007_s11203-016-9152-2
    DOI: 10.1007/s11203-016-9152-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-016-9152-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-016-9152-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cialenco, Igor & Xu, Liaosha, 2015. "Hypothesis testing for stochastic PDEs driven by additive noise," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 819-866.
    2. Igor Cialenco & Sergey Lototsky, 2009. "Parameter estimation in diagonalizable bilinear stochastic parabolic equations," Statistical Inference for Stochastic Processes, Springer, vol. 12(3), pages 203-219, October.
    3. Cialenco, Igor & Glatt-Holtz, Nathan, 2011. "Parameter estimation for the stochastically perturbed Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 701-724, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bibinger, Markus & Trabs, Mathias, 2020. "Volatility estimation for stochastic PDEs using high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3005-3052.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Cialenco, 2018. "Statistical inference for SPDEs: an overview," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 309-329, July.
    2. Cialenco, Igor & Kim, Hyun-Jung, 2022. "Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 1-30.
    3. Cheng, Ziteng & Cialenco, Igor & Gong, Ruoting, 2020. "Bayesian estimations for diagonalizable bilinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 845-877.
    4. Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
    5. Cialenco, Igor & Xu, Liaosha, 2015. "Hypothesis testing for stochastic PDEs driven by additive noise," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 819-866.
    6. Igor Cialenco & Hyun-Jung Kim & Sergey V. Lototsky, 2020. "Statistical analysis of some evolution equations driven by space-only noise," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 83-103, April.
    7. Bibinger, Markus & Trabs, Mathias, 2020. "Volatility estimation for stochastic PDEs using high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3005-3052.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:1:d:10.1007_s11203-016-9152-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.