IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v175y2024ics0304414924000917.html
   My bibliography  Save this article

Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements

Author

Listed:
  • Janák, Josef
  • Reiß, Markus

Abstract

For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator, derived in Altmeyer and Reiß (2021) for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.

Suggested Citation

  • Janák, Josef & Reiß, Markus, 2024. "Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924000917
    DOI: 10.1016/j.spa.2024.104385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igor Cialenco & Sergey Lototsky, 2009. "Parameter estimation in diagonalizable bilinear stochastic parabolic equations," Statistical Inference for Stochastic Processes, Springer, vol. 12(3), pages 203-219, October.
    2. Cheng, Ziteng & Cialenco, Igor & Gong, Ruoting, 2020. "Bayesian estimations for diagonalizable bilinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 845-877.
    3. Cialenco, Igor & Glatt-Holtz, Nathan, 2011. "Parameter estimation for the stochastically perturbed Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 701-724, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cialenco, Igor & Kim, Hyun-Jung, 2022. "Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 1-30.
    2. Igor Cialenco, 2018. "Statistical inference for SPDEs: an overview," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 309-329, July.
    3. Igor Cialenco & Ruoting Gong & Yicong Huang, 2018. "Trajectory fitting estimators for SPDEs driven by additive noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 1-19, April.
    4. Cheng, Ziteng & Cialenco, Igor & Gong, Ruoting, 2020. "Bayesian estimations for diagonalizable bilinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 845-877.
    5. Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
    6. Cialenco, Igor & Xu, Liaosha, 2015. "Hypothesis testing for stochastic PDEs driven by additive noise," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 819-866.
    7. Igor Cialenco & Hyun-Jung Kim & Sergey V. Lototsky, 2020. "Statistical analysis of some evolution equations driven by space-only noise," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 83-103, April.
    8. Bibinger, Markus & Trabs, Mathias, 2020. "Volatility estimation for stochastic PDEs using high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3005-3052.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924000917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.