The Combined Estimator for Stochastic Equations on Graphs with Fractional Noise
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Igor Cialenco, 2018. "Statistical inference for SPDEs: an overview," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 309-329, July.
- Alexandre Brouste & Stefano Iacus, 2013. "Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package," Computational Statistics, Springer, vol. 28(4), pages 1529-1547, August.
- Rosenbaum, Mathieu, 2008. "Estimation of the volatility persistence in a discretely observed diffusion model," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1434-1462, August.
- B. Pasik-Duncan & T. E. Duncan & B. Maslowski, 2006. "Linear Stochastic Equations in a Hilbert Space with a Fractional Brownian Motion," International Series in Operations Research & Management Science, in: Houmin Yan & George Yin & Qing Zhang (ed.), Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, chapter 0, pages 201-221, Springer.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pavel Kříž & Leszek Szała, 2020. "Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein–Uhlenbeck Processes," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
- Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
- di Nunno, Giulia & Ortiz–Latorre, Salvador & Petersson, Andreas, 2023. "SPDE bridges with observation noise and their spatial approximation," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 170-207.
- Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
- Issoglio, E. & Riedle, M., 2014. "Cylindrical fractional Brownian motion in Banach spaces," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3507-3534.
- Benth, Fred Espen & Schroers, Dennis & Veraart, Almut E.D., 2022. "A weak law of large numbers for realised covariation in a Hilbert space setting," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 241-268.
- Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
- Zhang, Yinghan & Yang, Xiaoyuan, 2015. "Fractional stochastic Volterra equation perturbed by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 20-36.
- Cheng, Ziteng & Cialenco, Igor & Gong, Ruoting, 2020. "Bayesian estimations for diagonalizable bilinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 845-877.
- Sixian Jin & Qidi Peng & Henry Schellhorn, 2018. "Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 113-140, April.
- Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
- Guangjun Shen & Qian Yu, 2019. "Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations," Statistical Papers, Springer, vol. 60(6), pages 2253-2271, December.
- El Mehdi Haress & Yaozhong Hu, 2021. "Estimation of all parameters in the fractional Ornstein–Uhlenbeck model under discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 327-351, July.
- Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
- Brouste, Alexandre & Fukasawa, Masaaki & Hino, Hideitsu & Iacus, Stefano & Kamatani, Kengo & Koike, Yuta & Masuda, Hiroki & Nomura, Ryosuke & Ogihara, Teppei & Shimuzu, Yasutaka & Uchida, Masayuki & Y, 2014. "The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i04).
- Bianchi, Sergio & Pianese, Augusto, 2018. "Time-varying Hurst–Hölder exponents and the dynamics of (in)efficiency in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 64-75.
- Cialenco, Igor & Kim, Hyun-Jung, 2022. "Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 1-30.
- Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
- Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
More about this item
Keywords
stochastic equations on graphs; fractional Brownian motion; parameter estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1766-:d:427321. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.