IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i1d10.1007_s11009-012-9306-7.html
   My bibliography  Save this article

Limit Theory for Moderate Deviations from a Unit Root Under Innovations with a Possibly Infinite Variance

Author

Listed:
  • Sai-Hua Huang

    (Zhejiang University)

  • Tian-Xiao Pang

    (Zhejiang University)

  • Chengguo Weng

    (University of Waterloo)

Abstract

An asymptotic theory was given by Phillips and Magdalinos (J Econom 136(1):115–130, 2007) for autoregressive time series Y t = ρY t−1 + u t , t = 1,...,n, with ρ = ρ n = 1 + c/k n , under (2 + δ)-order moment condition for the innovations u t , where δ > 0 when c 0, {u t } is a sequence of independent and identically distributed random variables, and (k n ) n ∈ ℕ is a deterministic sequence increasing to infinity at a rate slower than n. In the present paper, we established similar results when the truncated second moment of the innovations $l(x)=\textsf{E} [u_1^2I\{|u_1|\le x\}]$ is a slowly varying function at ∞, which may tend to infinity as x → ∞. More interestingly, we proposed a new pivotal for the coefficient ρ in case c

Suggested Citation

  • Sai-Hua Huang & Tian-Xiao Pang & Chengguo Weng, 2014. "Limit Theory for Moderate Deviations from a Unit Root Under Innovations with a Possibly Infinite Variance," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 187-206, March.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:1:d:10.1007_s11009-012-9306-7
    DOI: 10.1007/s11009-012-9306-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-012-9306-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-012-9306-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gaowen, 2006. "A note on unit root tests with heavy-tailed GARCH errors," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1075-1079, May.
    2. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    3. Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
    4. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    2. Pang, Tianxiao & Tai-Leung Chong, Terence & Zhang, Danna & Liang, Yanling, 2018. "Structural Change In Nonstationary Ar(1) Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 985-1017, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
    2. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    3. Patrik Guggenberger, "undated". "Asymptotics for Stationary Very Nearly Unit Root Processes (joint with D.W.K. Andrews), this version November 2006," UCLA Economics Online Papers 402, UCLA Department of Economics.
    4. Yabe, Ryota, 2017. "Asymptotic distribution of the conditional-sum-of-squares estimator under moderate deviation from a unit root in MA(1)," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 220-226.
    5. Giraitis, Liudas & Phillips, Peter C.B., 2012. "Mean and autocovariance function estimation near the boundary of stationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 166-178.
    6. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    7. Donald W. K. Andrews & Patrik Guggenberger, 2008. "Asymptotics for stationary very nearly unit root processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 203-212, January.
    8. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    9. Bailey, N. & Giraitis, L., 2013. "Weak convergence in the near unit root setting," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1411-1415.
    10. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    11. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
    12. Kurozumi, Eiji & Hayakawa, Kazuhiko, 2009. "Asymptotic properties of the efficient estimators for cointegrating regression models with serially dependent errors," Journal of Econometrics, Elsevier, vol. 149(2), pages 118-135, April.
    13. Peter C. B. Phillips, 2014. "On Confidence Intervals for Autoregressive Roots and Predictive Regression," Econometrica, Econometric Society, vol. 82(3), pages 1177-1195, May.
    14. Hwang, Eunju, 2019. "A note on limit theory for mildly stationary autoregression with a heavy-tailed GARCH error process," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 59-68.
    15. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    16. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    17. YABE, Ryota & 矢部, 竜太, 2014. "Asymptotic Distribution of the Conditional Sum of Squares Estimator Under Moderate Deviation From a Unit Root in MA(1)," Discussion Papers 2014-19, Graduate School of Economics, Hitotsubashi University.
    18. Phillips, Peter C.B. & Magdalinos, Tassos & Giraitis, Liudas, 2010. "Smoothing local-to-moderate unit root theory," Journal of Econometrics, Elsevier, vol. 158(2), pages 274-279, October.
    19. Jardet, Caroline & Monfort, Alain & Pegoraro, Fulvio, 2013. "No-arbitrage Near-Cointegrated VAR(p) term structure models, term premia and GDP growth," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 389-402.
    20. Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:1:d:10.1007_s11009-012-9306-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.