IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v22y2016i3d10.1007_s10985-015-9336-x.html
   My bibliography  Save this article

Copula based flexible modeling of associations between clustered event times

Author

Listed:
  • Candida Geerdens

    (Universiteit Hasselt)

  • Gerda Claeskens

    (KU Leuven)

  • Paul Janssen

    (Universiteit Hasselt)

Abstract

Multivariate survival data are characterized by the presence of correlation between event times within the same cluster. First, we build multi-dimensional copulas with flexible and possibly symmetric dependence structures for such data. In particular, clustered right-censored survival data are modeled using mixtures of max-infinitely divisible bivariate copulas. Second, these copulas are fit by a likelihood approach where the vast amount of copula derivatives present in the likelihood is approximated by finite differences. Third, we formulate conditions for clustered right-censored survival data under which an information criterion for model selection is either weakly consistent or consistent. Several of the familiar selection criteria are included. A set of four-dimensional data on time-to-mastitis is used to demonstrate the developed methodology.

Suggested Citation

  • Candida Geerdens & Gerda Claeskens & Paul Janssen, 2016. "Copula based flexible modeling of associations between clustered event times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 363-381, July.
  • Handle: RePEc:spr:lifeda:v:22:y:2016:i:3:d:10.1007_s10985-015-9336-x
    DOI: 10.1007/s10985-015-9336-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-015-9336-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-015-9336-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    2. Chen, Xiaohong & Fan, Yanqin & Pouzo, Demian & Ying, Zhiliang, 2010. "Estimation and model selection of semiparametric multivariate survival functions under general censorship," Journal of Econometrics, Elsevier, vol. 157(1), pages 129-142, July.
    3. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    4. Klara Goethals & Paul Janssen & Luc Duchateau, 2008. "Frailty models and copulas: similarities and differences," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1071-1079.
    5. Michael G. Akritas & Ingrid Van Keilegom, 2003. "Estimation of bivariate and marginal distributions with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 457-471, May.
    6. Joe, H., 1993. "Parametric Families of Multivariate Distributions with Given Margins," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 262-282, August.
    7. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    8. Steffen Grønneberg & Nils Lid Hjort, 2014. "The Copula Information Criteria," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 436-459, June.
    9. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258.
    10. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    11. Joe, Harry & Hu, Taizhong, 1996. "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 240-265, May.
    12. Gerda Claeskens & Rosemary Nguti & Paul Janssen, 2008. "One-sided tests in shared frailty models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 69-82, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barthel, Nicole & Geerdens, Candida & Killiches, Matthias & Janssen, Paul & Czado, Claudia, 2018. "Vine copula based likelihood estimation of dependence patterns in multivariate event time data," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 109-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barthel, Nicole & Geerdens, Candida & Killiches, Matthias & Janssen, Paul & Czado, Claudia, 2018. "Vine copula based likelihood estimation of dependence patterns in multivariate event time data," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 109-127.
    2. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    3. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    4. Ko, Vinnie & Hjort, Nils Lid, 2019. "Model robust inference with two-stage maximum likelihood estimation for copulas," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 362-381.
    5. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    6. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    7. Ko, Vinnie & Hjort, Nils Lid, 2019. "Copula information criterion for model selection with two-stage maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 12(C), pages 167-180.
    8. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    9. Fernanda Maria Müller & Marcelo Brutti Righi, 2018. "Numerical comparison of multivariate models to forecasting risk measures," Risk Management, Palgrave Macmillan, vol. 20(1), pages 29-50, February.
    10. Yuri Salazar Flores & Adán Díaz-Hernández, 2021. "Counterdiagonal/nonpositive tail dependence in Vine copula constructions: application to portfolio management," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 375-407, June.
    11. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    12. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    13. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    14. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    15. Mazo, Gildas & Averyanov, Yaroslav, 2019. "Constraining kernel estimators in semiparametric copula mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 170-189.
    16. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    17. Oliver Grothe & Stephan Nicklas, 2012. "Vine Constructions of Levy Copulas," Papers 1207.4309, arXiv.org, revised Sep 2012.
    18. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2012.
    19. Nabil Kazi-Tani & Didier Rullière, 2019. "On a construction of multivariate distributions given some multidimensional marginals," Post-Print hal-01575169, HAL.
    20. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:22:y:2016:i:3:d:10.1007_s10985-015-9336-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.