IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v131y2021icp151-171.html
   My bibliography  Save this article

Truncated moments of perpetuities and a new central limit theorem for GARCH processes without Kesten’s regularity

Author

Listed:
  • Jakubowski, Adam
  • Szewczak, Zbigniew S.

Abstract

We consider a class of perpetuities which admit direct characterization of asymptotics of the key truncated moment. The class contains perpetuities without polynomial decay of tail probabilities thus not satisfying Kesten’s theorem. We show how to apply this result in deriving a new weak law of large numbers for solutions to stochastic recurrence equations and a new central limit theorem for GARCH(1,1) processes in the critical case.

Suggested Citation

  • Jakubowski, Adam & Szewczak, Zbigniew S., 2021. "Truncated moments of perpetuities and a new central limit theorem for GARCH processes without Kesten’s regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 151-171.
  • Handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:151-171
    DOI: 10.1016/j.spa.2020.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492030363X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    2. Damek, Ewa & Kołodziejek, Bartosz, 2020. "Stochastic recursions: Between Kesten’s and Grincevičius–Grey’s assumptions," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1792-1819.
    3. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    2. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    3. Chandra, S. Ajay, 2009. "Testing the equality of error distributions from k independent GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1245-1260, July.
    4. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    5. Saidi, Youssef & Zakoian, Jean-Michel, 2006. "Stationarity and geometric ergodicity of a class of nonlinear ARCH models," MPRA Paper 61988, University Library of Munich, Germany, revised 2006.
    6. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    7. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
    8. Boussama, Farid & Fuchs, Florian & Stelzer, Robert, 2011. "Stationarity and geometric ergodicity of BEKK multivariate GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2331-2360, October.
    9. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2019. "A General Framework for Prediction in Time Series Models," Papers 1902.01622, arXiv.org.
    10. Ping-Yu Chen & Chia-Lin Chang & Chi-Chung Chen & Michael McAleer, 2010. "Modeling the Effect of Oil Price on Global Fertilizer Prices," KIER Working Papers 722, Kyoto University, Institute of Economic Research.
    11. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    12. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    13. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    14. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    15. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
    16. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    17. repec:dau:papers:123456789/2285 is not listed on IDEAS
    18. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    19. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    20. Christian Francq & Jean-Michel Zakoïan, 2006. "Inference in GARCH when some coefficients are equal to zero," Computing in Economics and Finance 2006 64, Society for Computational Economics.
    21. repec:hum:wpaper:sfb649dp2012-054 is not listed on IDEAS
    22. Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024. "Doubly multiplicative error models with long- and short-run components," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:151-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.