IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i1p328-365.html
   My bibliography  Save this article

Recursive computation of invariant distributions of Feller processes

Author

Listed:
  • Pagès, Gilles
  • Rey, Clément

Abstract

This paper provides a general and abstract approach to compute invariant distributions for Feller processes. More precisely, we show that the recursive algorithm presented in Lamberton and Pagès (2002) and based on simulation algorithms of stochastic schemes with decreasing steps can be used to build invariant measures for general Feller processes. We also propose various applications: Approximation of Markov Brownian diffusion stationary regimes with a Milstein or an Euler scheme and approximation of a Markov switching Brownian diffusion stationary regimes using an Euler scheme.

Suggested Citation

  • Pagès, Gilles & Rey, Clément, 2020. "Recursive computation of invariant distributions of Feller processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 328-365.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:1:p:328-365
    DOI: 10.1016/j.spa.2019.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919301498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ganidis, H. & Roynette, B. & Simonot, F., 1999. "Convergence rate of some semi-groups to their invariant probability," Stochastic Processes and their Applications, Elsevier, vol. 79(2), pages 243-263, February.
    2. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    3. Gilles Pag`es & Fabien Panloup, 2007. "Approximation of the distribution of a stationary Markov process with application to option pricing," Papers 0704.0335, arXiv.org, revised Sep 2009.
    4. Mei, Hongwei & Yin, George, 2015. "Convergence and convergence rates for approximating ergodic means of functions of solutions to stochastic differential equations with Markov switching," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3104-3125.
    5. Panloup, Fabien, 2008. "Computation of the invariant measure for a Lévy driven SDE: Rate of convergence," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1351-1384, August.
    6. Basak, Gopal K. & Hu, Inchi & Wei, Ching-Zong, 1997. "Weak convergence of recursions," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 65-82, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilles Pagès & Clément Rey, 2023. "Discretization of the Ergodic Functional Central Limit Theorem," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-44, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Pagès & Clément Rey, 2023. "Discretization of the Ergodic Functional Central Limit Theorem," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-44, March.
    2. Pagès Gilles & Rey Clément, 2019. "Recursive computation of the invariant distributions of Feller processes: Revisited examples and new applications," Monte Carlo Methods and Applications, De Gruyter, vol. 25(1), pages 1-36, March.
    3. Pagès, Gilles & Panloup, Fabien, 2014. "A mixed-step algorithm for the approximation of the stationary regime of a diffusion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 522-565.
    4. Cohen, Serge & Panloup, Fabien, 2011. "Approximation of stationary solutions of Gaussian driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2776-2801.
    5. Cohen, Serge & Panloup, Fabien & Tindel, Samy, 2014. "Approximation of stationary solutions to SDEs driven by multiplicative fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1197-1225.
    6. Honoré, Igor, 2020. "Sharp non-asymptotic concentration inequalities for the approximation of the invariant distribution of a diffusion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2127-2158.
    7. Laruelle Sophie & Pagès Gilles, 2012. "Stochastic approximation with averaging innovation applied to Finance," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 1-51, January.
    8. Alexander Veretennikov, 2023. "Polynomial Recurrence for SDEs with a Gradient-Type Drift, Revisited," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    9. Panloup, Fabien, 2008. "Computation of the invariant measure for a Lévy driven SDE: Rate of convergence," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1351-1384, August.
    10. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    11. Gilles Pag`es & Fabien Panloup, 2007. "Approximation of the distribution of a stationary Markov process with application to option pricing," Papers 0704.0335, arXiv.org, revised Sep 2009.
    12. Gadat, Sébastien & Panloup, Fabien & Saadane, Sofiane, 2016. "Stochastic Heavy Ball," TSE Working Papers 16-712, Toulouse School of Economics (TSE).
    13. Vincent Lemaire & Thibaut Montes & Gilles Pag`es, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Papers 2001.03101, arXiv.org, revised Jul 2020.
    14. Panloup, Fabien, 2009. "A connection between extreme value theory and long time approximation of SDEs," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3583-3607, October.
    15. G. O. Roberts & O. Stramer, 2002. "Langevin Diffusions and Metropolis-Hastings Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 4(4), pages 337-357, December.
    16. Chen, Peng & Deng, Chang-Song & Schilling, René L. & Xu, Lihu, 2023. "Approximation of the invariant measure of stable SDEs by an Euler–Maruyama scheme," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 136-167.
    17. Gopal K. Basak & Amites Dasgupta, 2006. "Central and Functional Central Limit Theorems for a Class of Urn Models," Journal of Theoretical Probability, Springer, vol. 19(3), pages 741-756, December.
    18. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    19. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2022. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Post-Print hal-02434232, HAL.
    20. Lyons, Terry J. & Margarint, Vlad & Nejad, Sina, 2024. "Convergence to closed-form distribution for the backward SLEκ at some random times and the phase transition at κ=8," Statistics & Probability Letters, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:1:p:328-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.