IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i4p2127-2158.html
   My bibliography  Save this article

Sharp non-asymptotic concentration inequalities for the approximation of the invariant distribution of a diffusion

Author

Listed:
  • Honoré, Igor

Abstract

Let (Yt)t≥0 be an ergodic diffusion with invariant distribution ν. Consider the empirical measure νn≔(∑k=1nγk)−1∑k=1nγkδXk−1 where (Xk)k≥0 is an Euler scheme with decreasing steps (γk)k≥0 which approximates (Yt)t≥0. Given a test function f, we obtain sharp concentration inequalities for νn(f)−ν(f) which improve the results in Honoré et al. (2019). Our hypotheses on the test function f cover many real applications: either f is supposed to be a coboundary of the infinitesimal generator of the diffusion, or f is supposed to be Lipschitz.

Suggested Citation

  • Honoré, Igor, 2020. "Sharp non-asymptotic concentration inequalities for the approximation of the invariant distribution of a diffusion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2127-2158.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2127-2158
    DOI: 10.1016/j.spa.2019.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919303862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panloup, Fabien, 2008. "Computation of the invariant measure for a Lévy driven SDE: Rate of convergence," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1351-1384, August.
    2. Basak, Gopal K. & Hu, Inchi & Wei, Ching-Zong, 1997. "Weak convergence of recursions," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 65-82, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Pagès & Clément Rey, 2023. "Discretization of the Ergodic Functional Central Limit Theorem," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-44, March.
    2. Pagès Gilles & Rey Clément, 2019. "Recursive computation of the invariant distributions of Feller processes: Revisited examples and new applications," Monte Carlo Methods and Applications, De Gruyter, vol. 25(1), pages 1-36, March.
    3. Pagès, Gilles & Rey, Clément, 2020. "Recursive computation of invariant distributions of Feller processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 328-365.
    4. Pagès, Gilles & Panloup, Fabien, 2014. "A mixed-step algorithm for the approximation of the stationary regime of a diffusion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 522-565.
    5. Gilles Pag`es & Fabien Panloup, 2007. "Approximation of the distribution of a stationary Markov process with application to option pricing," Papers 0704.0335, arXiv.org, revised Sep 2009.
    6. Panloup, Fabien, 2009. "A connection between extreme value theory and long time approximation of SDEs," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3583-3607, October.
    7. Gopal K. Basak & Amites Dasgupta, 2006. "Central and Functional Central Limit Theorems for a Class of Urn Models," Journal of Theoretical Probability, Springer, vol. 19(3), pages 741-756, December.
    8. Amarjit Budhiraja & Jiang Chen & Sylvain Rubenthaler, 2014. "A Numerical Scheme for Invariant Distributions of Constrained Diffusions," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 262-289, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2127-2158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.