IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v32y2019i1d10.1007_s10959-018-0832-2.html
   My bibliography  Save this article

Singularity Analysis for Heavy-Tailed Random Variables

Author

Listed:
  • Nicholas M. Ercolani

    (The University of Arizona)

  • Sabine Jansen

    (Ludwigs-Maximilians Universität München)

  • Daniel Ueltschi

    (University of Warwick)

Abstract

We propose a novel complex-analytic method for sums of i.i.d. random variables that are heavy-tailed and integer-valued. The method combines singularity analysis, Lindelöf integrals, and bivariate saddle points. As an application, we prove three theorems on precise large and moderate deviations which provide a local variant of a result by Nagaev (Transactions of the sixth Prague conference on information theory, statistical decision functions, random processes, Academia, Prague, 1973). The theorems generalize five theorems by Nagaev (Litov Mat Sb 8:553–579, 1968) on stretched exponential laws $$p(k) = c\exp ( -k^\alpha )$$ p ( k ) = c exp ( - k α ) and apply to logarithmic hazard functions $$c\exp ( - (\log k)^\beta )$$ c exp ( - ( log k ) β ) , $$\beta >2$$ β > 2 ; they cover the big-jump domain as well as the small steps domain. The analytic proof is complemented by clear probabilistic heuristics. Critical sequences are determined with a non-convex variational problem.

Suggested Citation

  • Nicholas M. Ercolani & Sabine Jansen & Daniel Ueltschi, 2019. "Singularity Analysis for Heavy-Tailed Random Variables," Journal of Theoretical Probability, Springer, vol. 32(1), pages 1-46, March.
  • Handle: RePEc:spr:jotpro:v:32:y:2019:i:1:d:10.1007_s10959-018-0832-2
    DOI: 10.1007/s10959-018-0832-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-018-0832-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-018-0832-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armendáriz, Inés & Grosskinsky, Stefan & Loulakis, Michail, 2013. "Zero-range condensation at criticality," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3466-3496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mailler, Cécile & Mörters, Peter & Ueltschi, Daniel, 2016. "Condensation and symmetry-breaking in the zero-range process with weak site disorder," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3283-3309.
    2. Grosskinsky, Stefan & Jatuviriyapornchai, Watthanan, 2019. "Derivation of mean-field equations for stochastic particle systems," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1455-1475.
    3. Landim, C., 2023. "Metastability from the large deviations point of view: A Γ-expansion of the level two large deviations rate functional of non-reversible finite-state Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 275-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:1:d:10.1007_s10959-018-0832-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.