IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v3y1975i3p259-282.html
   My bibliography  Save this article

Controlled jump processes

Author

Listed:
  • Pliska, Stanley R.

Abstract

Finite and infinite planning horizon Markov decision problems are formulated for a class of jump processes with general state and action spaces and controls which are measurable functions on the time axis taking values in an appropriate metrizable vector space. For the finite horizon problem, the maximum expected reward is the unique solution, which exists, of a certain differential equation and is a strongly continuous function in the space of upper semi-continuous functions. A necessary and sufficient condition is provided for an admissible control to be optimal, and a sufficient condition is provided for the existence of a measurable optimal policy. For the infinite horizon problem, the maximum expected total reward is the fixed point of a certain operator on the space of upper semi-continuous functions. A stationary policy is optimal over all measurable policies in the transient and discounted cases as well as, with certain added conditions, in the positive and negative cases.

Suggested Citation

  • Pliska, Stanley R., 1975. "Controlled jump processes," Stochastic Processes and their Applications, Elsevier, vol. 3(3), pages 259-282, July.
  • Handle: RePEc:eee:spapps:v:3:y:1975:i:3:p:259-282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(75)90025-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingda Wei, 2017. "Finite approximation for finite-horizon continuous-time Markov decision processes," 4OR, Springer, vol. 15(1), pages 67-84, March.
    2. Bandini, Elena & Fuhrman, Marco, 2017. "Constrained BSDEs representation of the value function in optimal control of pure jump Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1441-1474.
    3. Naveed Chehrazi & Peter W. Glynn & Thomas A. Weber, 2019. "Dynamic Credit-Collections Optimization," Management Science, INFORMS, vol. 67(6), pages 2737-2769, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:3:y:1975:i:3:p:259-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.