IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v125y2015i2p428-457.html
   My bibliography  Save this article

Central limit theorems for supercritical superprocesses

Author

Listed:
  • Ren, Yan-Xia
  • Song, Renming
  • Zhang, Rui

Abstract

In this paper, we establish a central limit theorem for a large class of general supercritical superprocesses with spatially dependent branching mechanisms satisfying a second moment condition. This central limit theorem generalizes and unifies all the central limit theorems obtained recently in Miłoś (2012) and Ren et al. (2014) for supercritical super Ornstein–Uhlenbeck processes. The advantage of this central limit theorem is that it allows us to characterize the limit Gaussian field. In the case of supercritical super Ornstein–Uhlenbeck processes with non-spatially dependent branching mechanisms, our central limit theorem reveals more independent structures of the limit Gaussian field.

Suggested Citation

  • Ren, Yan-Xia & Song, Renming & Zhang, Rui, 2015. "Central limit theorems for supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 428-457.
  • Handle: RePEc:eee:spapps:v:125:y:2015:i:2:p:428-457
    DOI: 10.1016/j.spa.2014.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414914002208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2014.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Karoui, Nicole & Roelly, Sylvie, 1991. "Propriétés de martingales, explosion et représentation de Lévy--Khintchine d'une classe de processus de branchement à valeurs mesures," Stochastic Processes and their Applications, Elsevier, vol. 38(2), pages 239-266, August.
    2. Cohn, H. & Hering, H., 1983. "Inhomogeneous Markov branching processes: Supercritical case," Stochastic Processes and their Applications, Elsevier, vol. 14(1), pages 79-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Wang, 2018. "Central Limit Theorems for Supercritical Superprocesses with Immigration," Journal of Theoretical Probability, Springer, vol. 31(2), pages 984-1012, June.
    2. Liu, Rongli & Ren, Yan-Xia & Song, Renming, 2022. "Convergence rate for a class of supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 286-327.
    3. Liu, Rongli & Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2023. "Subcritical superprocesses conditioned on non-extinction," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 498-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyprianou, A.E. & Ren, Y.-X., 2012. "Backbone decomposition for continuous-state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 139-144.
    2. He, Hui, 2009. "Discontinuous superprocesses with dependent spatial motion," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 130-166, January.
    3. Sagitov, Serik, 2017. "Tail generating functions for extendable branching processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1649-1675.
    4. Li Wang, 2018. "Central Limit Theorems for Supercritical Superprocesses with Immigration," Journal of Theoretical Probability, Springer, vol. 31(2), pages 984-1012, June.
    5. Liu, Rongli & Ren, Yan-Xia & Song, Renming, 2022. "Convergence rate for a class of supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 286-327.
    6. Zhang, Hanjun & Mo, Yongxiang, 2023. "Domain of attraction of quasi-stationary distribution for absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 192(C).
    7. Mailler, Cécile & Mörters, Peter & Senkevich, Anna, 2021. "Competing growth processes with random growth rates and random birth times," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 183-226.
    8. Leduc, Guillaume, 2006. "Martingale problem for superprocesses with non-classical branching functional," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1468-1495, October.
    9. Mandler, Christian & Overbeck, Ludger, 2022. "A functional Itō-formula for Dawson–Watanabe superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 202-228.
    10. Liu, Rongli & Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2021. "Quasi-stationary distributions for subcritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 108-134.
    11. Wang, Juan & Wang, Xueke & Li, Junping, 2023. "Asymptotic behavior for supercritical branching processes," Statistics & Probability Letters, Elsevier, vol. 195(C).
    12. Dawson, Donald A. & Hochberg, Kenneth J. & Vinogradov, Vladimir, 1996. "High-density limits of hierarchically structured branching-diffusing populations," Stochastic Processes and their Applications, Elsevier, vol. 62(2), pages 191-222, July.
    13. Li, Junping & Meng, Weiwei, 2017. "Regularity criterion for 2-type Markov branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 109-118.
    14. Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2020. "Limit theorems for a class of critical superprocesses with stable branching," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4358-4391.
    15. Li, Zenghu & Zhang, Mei, 2006. "Fluctuation limit theorems of immigration superprocesses with small branching," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 401-411, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:125:y:2015:i:2:p:428-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.