IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v135y2021icp183-226.html
   My bibliography  Save this article

Competing growth processes with random growth rates and random birth times

Author

Listed:
  • Mailler, Cécile
  • Mörters, Peter
  • Senkevich, Anna

Abstract

Comparing individual contributions in a strongly interacting system of stochastic growth processes can be a very difficult problem. This is particularly the case when new growth processes are initiated depending on the state of previous ones and the growth rates of the individual processes are themselves random. We propose a novel technique to deal with such problems and show how it can be applied to a broad range of examples where it produces new insight and surprising results. The method relies on two steps: In the first step, which is highly problem dependent, the growth processes are jointly embedded into continuous time so that their evolutions after initiation become approximately independent while we retain some control over the initiation times. Once such an embedding is achieved, the second step is to apply a Poisson limit theorem that enables a comparison of the state of the processes initiated in a critical window and therefore allows an asymptotic description of the extremal process. In this paper we prove a versatile limit theorem of this type and show how this tool can be applied to obtain novel asymptotic results for a variety of interesting stochastic processes. These include (a) the maximal degree in different types of preferential attachment networks with fitnesses like the well-known Bianconi–Barabási tree and a network model of Dereich, (b) the most successful mutant in branching processes evolving by selection and mutation, and (c) the ratio between the largest and second largest cycles in a random permutation with random cycle weights, which can also be interpreted as a disordered version of Pitman’s Chinese restaurant process.

Suggested Citation

  • Mailler, Cécile & Mörters, Peter & Senkevich, Anna, 2021. "Competing growth processes with random growth rates and random birth times," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 183-226.
  • Handle: RePEc:eee:spapps:v:135:y:2021:i:c:p:183-226
    DOI: 10.1016/j.spa.2021.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921000193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohn, H. & Hering, H., 1983. "Inhomogeneous Markov branching processes: Supercritical case," Stochastic Processes and their Applications, Elsevier, vol. 14(1), pages 79-91, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sagitov, Serik, 2017. "Tail generating functions for extendable branching processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1649-1675.
    2. Liu, Rongli & Ren, Yan-Xia & Song, Renming, 2022. "Convergence rate for a class of supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 286-327.
    3. Zhang, Hanjun & Mo, Yongxiang, 2023. "Domain of attraction of quasi-stationary distribution for absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 192(C).
    4. Ren, Yan-Xia & Song, Renming & Zhang, Rui, 2015. "Central limit theorems for supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 428-457.
    5. Liu, Rongli & Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2021. "Quasi-stationary distributions for subcritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 108-134.
    6. Wang, Juan & Wang, Xueke & Li, Junping, 2023. "Asymptotic behavior for supercritical branching processes," Statistics & Probability Letters, Elsevier, vol. 195(C).
    7. Li, Junping & Meng, Weiwei, 2017. "Regularity criterion for 2-type Markov branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 109-118.
    8. Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2020. "Limit theorems for a class of critical superprocesses with stable branching," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4358-4391.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:135:y:2021:i:c:p:183-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.