IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v62y1996i2p191-222.html
   My bibliography  Save this article

High-density limits of hierarchically structured branching-diffusing populations

Author

Listed:
  • Dawson, Donald A.
  • Hochberg, Kenneth J.
  • Vinogradov, Vladimir

Abstract

We develop a general probabilistic approach that enables one to get sharp estimates for the almost-sure short-term behavior of hierarchically structured branching-diffusion processes. This approach involves the thorough investigation of the cluster structure and the derivation of some probability estimates for the sets of rapidly fluctuating realizations. In addition, our approach leads to the derivation of new modulus-of-continuity-type results for measure-valued processes. In turn, the modulus-of-continuity-type results for hierarchical branching-diffusion processes are used to derive upper estimates for the Hausdorff dimension of support.

Suggested Citation

  • Dawson, Donald A. & Hochberg, Kenneth J. & Vinogradov, Vladimir, 1996. "High-density limits of hierarchically structured branching-diffusing populations," Stochastic Processes and their Applications, Elsevier, vol. 62(2), pages 191-222, July.
  • Handle: RePEc:eee:spapps:v:62:y:1996:i:2:p:191-222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(96)00052-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bojdecki, Tomasz & Gorostiza, Luis G., 1995. "Self-intersection local time for Gaussian '(d)-processes: Existence, path continuity and examples," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 191-226, December.
    2. El Karoui, Nicole & Roelly, Sylvie, 1991. "Propriétés de martingales, explosion et représentation de Lévy--Khintchine d'une classe de processus de branchement à valeurs mesures," Stochastic Processes and their Applications, Elsevier, vol. 38(2), pages 239-266, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. A. Dawson & L. G. Gorostiza & A. Wakolbinger, 2001. "Occupation Time Fluctuations in Branching Systems," Journal of Theoretical Probability, Springer, vol. 14(3), pages 729-796, July.
    2. Zhou, Xiaowen, 2008. "A zero-one law of almost sure local extinction for (1+[beta])-super-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1982-1996, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gorostiza, Luis G. & Todorova, Ekaterina, 1999. "Self-intersection local time of an -valued process involving motions of two types," Stochastic Processes and their Applications, Elsevier, vol. 81(2), pages 271-298, June.
    2. Kyprianou, A.E. & Ren, Y.-X., 2012. "Backbone decomposition for continuous-state branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 139-144.
    3. He, Hui, 2009. "Discontinuous superprocesses with dependent spatial motion," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 130-166, January.
    4. Li Wang, 2018. "Central Limit Theorems for Supercritical Superprocesses with Immigration," Journal of Theoretical Probability, Springer, vol. 31(2), pages 984-1012, June.
    5. Ren, Yan-Xia & Song, Renming & Zhang, Rui, 2015. "Central limit theorems for supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 428-457.
    6. Bojdecki, Tomasz & Jakubowski, Jacek, 1999. "Invariant measures for generalized Langevin equations in conuclear space," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 1-24, November.
    7. Leduc, Guillaume, 2006. "Martingale problem for superprocesses with non-classical branching functional," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1468-1495, October.
    8. Mandler, Christian & Overbeck, Ludger, 2022. "A functional Itō-formula for Dawson–Watanabe superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 202-228.
    9. Talarczyk, Anna, 2001. "Self-intersection local time of order k for Gaussian processes in," Stochastic Processes and their Applications, Elsevier, vol. 96(1), pages 17-72, November.
    10. Li, Zenghu & Zhang, Mei, 2006. "Fluctuation limit theorems of immigration superprocesses with small branching," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 401-411, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:62:y:1996:i:2:p:191-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.