IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i5p1649-1675.html
   My bibliography  Save this article

Tail generating functions for extendable branching processes

Author

Listed:
  • Sagitov, Serik

Abstract

We study branching processes of independently splitting particles in the continuous time setting. If time is calibrated such that particles live on average one unit of time, the corresponding transition rates are fully determined by the generating function f for the offspring number of a single particle. We are interested in the defective case f(1)=1−ϵ, where each splitting particle with probability ϵ is able to terminate the whole branching process. A branching process {Zt}t≥0 will be called extendable if f(q)=q and f(r)=r for some 0≤q

Suggested Citation

  • Sagitov, Serik, 2017. "Tail generating functions for extendable branching processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1649-1675.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:5:p:1649-1675
    DOI: 10.1016/j.spa.2016.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916301545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohn, H. & Hering, H., 1983. "Inhomogeneous Markov branching processes: Supercritical case," Stochastic Processes and their Applications, Elsevier, vol. 14(1), pages 79-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Avram & P. Patie & J. Wang, 2019. "Purely Excessive Functions and Hitting Times of Continuous-Time Branching Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 391-399, June.
    2. J. Hüsler & M. G. Temido & A. Valente-Freitas, 2022. "On the Maximum of a Bivariate INMA Model with Integer Innovations," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2373-2402, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Rongli & Ren, Yan-Xia & Song, Renming, 2022. "Convergence rate for a class of supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 286-327.
    2. Zhang, Hanjun & Mo, Yongxiang, 2023. "Domain of attraction of quasi-stationary distribution for absorbing Markov processes," Statistics & Probability Letters, Elsevier, vol. 192(C).
    3. Ren, Yan-Xia & Song, Renming & Zhang, Rui, 2015. "Central limit theorems for supercritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 428-457.
    4. Mailler, Cécile & Mörters, Peter & Senkevich, Anna, 2021. "Competing growth processes with random growth rates and random birth times," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 183-226.
    5. Liu, Rongli & Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2021. "Quasi-stationary distributions for subcritical superprocesses," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 108-134.
    6. Wang, Juan & Wang, Xueke & Li, Junping, 2023. "Asymptotic behavior for supercritical branching processes," Statistics & Probability Letters, Elsevier, vol. 195(C).
    7. Li, Junping & Meng, Weiwei, 2017. "Regularity criterion for 2-type Markov branching processes with immigration," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 109-118.
    8. Ren, Yan-Xia & Song, Renming & Sun, Zhenyao, 2020. "Limit theorems for a class of critical superprocesses with stable branching," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4358-4391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:5:p:1649-1675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.