IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i19p4863-4870.html
   My bibliography  Save this article

Random strategies of contact tracking

Author

Listed:
  • Dybiec, Bartłomiej

Abstract

One of several critical issues in the development of optimal disease containment and eradication strategies is the knowledge of underlying contacts between individuals. Here we employ random search strategies to identify all possible links, representing direct or indirect interactions between individuals building up the system. In order to recognize all contacts, the searcher performs symmetric Lévy flights onto the accessible area. We investigate the influence of local and non-local information, the exponent characterizing asymptotic behavior of Lévy flights, boundary conditions, density of links and type of a search strategy on the efficiency of the search process. Monte Carlo examination of the suggested model reveals that the efficiency of the search process is sensitive to the type of boundary conditions. Depending on the assumed type of boundary conditions, efficiency of the search process can be a monotonic or non-monotonic function of the exponents characterizing asymptotic behavior of Lévy flights. Consequently, among the whole spectrum of exponents characterizing the power law behavior of jumps’ length, there exist distinguished values of stability index representing the most efficient search processes. These exponents correspond to extreme (minimal or maximal) or intermediate values of stability index associated with Gaussian, maximally heavy-tailed or Cauchy-like strategies, respectively.

Suggested Citation

  • Dybiec, Bartłomiej, 2008. "Random strategies of contact tracking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4863-4870.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:19:p:4863-4870
    DOI: 10.1016/j.physa.2008.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710800397X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:19:p:4863-4870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.