IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i6p2323-2339.html
   My bibliography  Save this article

Block sampling under strong dependence

Author

Listed:
  • Zhang, Ting
  • Ho, Hwai-Chung
  • Wendler, Martin
  • Wu, Wei Biao

Abstract

The paper considers the block sampling method for long-range dependent processes. Our theory generalizes earlier ones by Hall et al. (1998) [11] on functionals of Gaussian processes and Nordman and Lahiri (2005) [16] on linear processes. In particular, we allow nonlinear transforms of linear processes. Under suitable conditions on physical dependence measures, we prove the validity of the block sampling method. Its finite-sample performance is illustrated by a simulation study.

Suggested Citation

  • Zhang, Ting & Ho, Hwai-Chung & Wendler, Martin & Wu, Wei Biao, 2013. "Block sampling under strong dependence," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2323-2339.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:6:p:2323-2339
    DOI: 10.1016/j.spa.2013.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913000446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    2. Lahiri, S. N., 1993. "On the moving block bootstrap under long range dependence," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 405-413, December.
    3. Wu, Wei Biao, 2006. "Unit Root Testing For Functionals Of Linear Processes," Econometric Theory, Cambridge University Press, vol. 22(1), pages 1-14, February.
    4. Nordman, Daniel J. & Lahiri, Soumendra N., 2005. "Validity Of The Sampling Window Method For Long-Range Dependent Linear Processes," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1087-1111, December.
    5. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    2. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Zhang & Hwai-Chung Ho & Martin Wendler & Wei Biao Wu, 2013. "Block Sampling under Strong Dependence," Papers 1312.5807, arXiv.org.
    2. Daniel J. Nordman & Philipp Sibbertsen & Soumendra N. Lahiri, 2007. "Empirical likelihood confidence intervals for the mean of a long‐range dependent process," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 576-599, July.
    3. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    4. Paul Doukhan & Ieva Grublytė & Denys Pommeret & Laurence Reboul, 2020. "Comparing the marginal densities of two strictly stationary linear processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1419-1447, December.
    5. Hailin Sang & Yongli Sang, 2017. "Memory properties of transformations of linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 79-103, April.
    6. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    7. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    8. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    9. Kang, Taegyu & Kim, Young Min & Im, Jongho, 2021. "A note on stationary bootstrap variance estimator under long-range dependence," Statistics & Probability Letters, Elsevier, vol. 169(C).
    10. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    11. Monge, Manuel & Romero Rojo, María Fátima & Gil-Alana, Luis Alberiko, 2023. "The impact of geopolitical risk on the behavior of oil prices and freight rates," Energy, Elsevier, vol. 269(C).
    12. Monge, Manuel & Cristóbal, Enrique, 2021. "Terrorism and the behavior of oil production and prices in OPEC," Resources Policy, Elsevier, vol. 74(C).
    13. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    14. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    16. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    17. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    18. Luis Gil-Alana, 2004. "Forecasting the real output using fractionally integrated techniques," Applied Economics, Taylor & Francis Journals, vol. 36(14), pages 1583-1589.
    19. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    20. Alketa Bejko & Belinda Xarba, 2021. "The Evaluation of the Drafting Process of Regional’s Development Strategies in Albania. the Research on Gjirokastra’s Region," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 1, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:6:p:2323-2339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.