IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i1p212-228.html
   My bibliography  Save this article

Large volatility-stabilized markets

Author

Listed:
  • Shkolnikov, Mykhaylo

Abstract

We investigate the behavior of systems of interacting diffusion processes, known as volatility-stabilized market models in the mathematical finance literature, when the number of diffusions tends to infinity. We show that, after an appropriate rescaling of the time parameter, the empirical measure of the system converges to the solution of a degenerate parabolic partial differential equation. A stochastic representation of the latter in terms of one-dimensional distributions of a time-changed squared Bessel process allows us to give an explicit description of the limit.

Suggested Citation

  • Shkolnikov, Mykhaylo, 2013. "Large volatility-stabilized markets," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 212-228.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:212-228
    DOI: 10.1016/j.spa.2012.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian Banner & Daniel Fernholz, 2008. "Short-term relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 4(4), pages 445-454, October.
    2. Shkolnikov, Mykhaylo, 2012. "Large systems of diffusions interacting through their ranks," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1730-1747.
    3. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    4. B. Jourdain, 2000. "Diffusion Processes Associated with Nonlinear Evolution Equations for Signed Measures," Methodology and Computing in Applied Probability, Springer, vol. 2(1), pages 69-91, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    2. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    3. Benjamin Jourdain & Julien Reygner, 2013. "Capital distribution and portfolio performance in the mean-field Atlas model," Papers 1312.5660, arXiv.org, revised Aug 2014.
    4. Benjamin Jourdain & Julien Reygner, 2015. "Capital distribution and portfolio performance in the mean-field Atlas model," Annals of Finance, Springer, vol. 11(2), pages 151-198, May.
    5. Andrey Sarantsev, 2014. "On a class of diverse market models," Annals of Finance, Springer, vol. 10(2), pages 291-314, May.
    6. Benjamin Jourdain & Julien Reygner, 2015. "Capital distribution and portfolio performance in the mean-field Atlas model," Post-Print hal-00921151, HAL.
    7. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    8. Brandon Flores & Blessing Ofori-Atta & Andrey Sarantsev, 2021. "A stock market model based on CAPM and market size," Annals of Finance, Springer, vol. 17(3), pages 405-424, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    2. Robert Fernholz, 2015. "An example of short-term relative arbitrage," Papers 1510.02292, arXiv.org.
    3. E. Robert Fernholz & Ioannis Karatzas & Johannes Ruf, 2016. "Volatility and Arbitrage," Papers 1608.06121, arXiv.org.
    4. Ting-Kam Leonard Wong, 2014. "Optimization of relative arbitrage," Papers 1407.8300, arXiv.org, revised Nov 2014.
    5. Winslow Strong, 2012. "Generalizations of Functionally Generated Portfolios with Applications to Statistical Arbitrage," Papers 1212.1877, arXiv.org, revised Oct 2013.
    6. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    7. Soumik Pal, 2016. "Exponentially concave functions and high dimensional stochastic portfolio theory," Papers 1603.01865, arXiv.org, revised Mar 2016.
    8. Ting-Kam Leonard Wong, 2017. "On portfolios generated by optimal transport," Papers 1709.03169, arXiv.org, revised Sep 2017.
    9. Radka Picková, 2014. "Generalized volatility-stabilized processes," Annals of Finance, Springer, vol. 10(1), pages 101-125, February.
    10. Andrey Sarantsev, 2014. "On a class of diverse market models," Annals of Finance, Springer, vol. 10(2), pages 291-314, May.
    11. Soumik Pal & Ting-Kam Leonard Wong, 2014. "The geometry of relative arbitrage," Papers 1402.3720, arXiv.org, revised Jul 2015.
    12. Andrey Sarantsev, 2019. "Comparison Techniques for Competing Brownian Particles," Journal of Theoretical Probability, Springer, vol. 32(2), pages 545-585, June.
    13. David Itkin & Martin Larsson, 2021. "On A Class Of Rank-Based Continuous Semimartingales," Papers 2104.04396, arXiv.org.
    14. Mykhaylo Shkolnikov & Lane Chun Yeung, 2024. "From rank-based models with common noise to pathwise entropy solutions of SPDEs," Papers 2406.07286, arXiv.org.
    15. Brandon Flores & Blessing Ofori-Atta & Andrey Sarantsev, 2021. "A stock market model based on CAPM and market size," Annals of Finance, Springer, vol. 17(3), pages 405-424, September.
    16. Winslow Strong & Jean-Pierre Fouque, 2011. "Diversity and arbitrage in a regulatory breakup model," Annals of Finance, Springer, vol. 7(3), pages 349-374, August.
    17. Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.
    18. Gabriel Frahm, 2013. "Pricing and Valuation under the Real-World Measure," Papers 1304.3824, arXiv.org, revised Jan 2016.
    19. Adrian Banner & Daniel Fernholz, 2008. "Short-term relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 4(4), pages 445-454, October.
    20. Aleksandar Mijatović & Mikhail Urusov, 2012. "Deterministic criteria for the absence of arbitrage in one-dimensional diffusion models," Finance and Stochastics, Springer, vol. 16(2), pages 225-247, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:212-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.