IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v13y2009i1p79-103.html
   My bibliography  Save this article

Background filtrations and canonical loss processes for top-down models of portfolio credit risk

Author

Abstract

In single-obligor default risk modelling, using a background filtration in conjunction with a suitable embedding hypothesis (generally known as H-hypothesis or immersion property) has proven a very successful tool to separate the actual default event from the model for the default arrival intensity. In this paper we analyze the conditions under which this approach can be extended to the situation of a portfolio of several obligors, with a particular focus on the so-called top-down approach. We introduce the natural H-hypothesis of this setup (the successive H-hypothesis) and show that it is equivalent to a seemingly weaker one-step H-hypothesis. Furthermore, we provide a canonical construction of a loss process in this setup and provide closed-form solutions for some generic pricing problems.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Philippe Ehlers & Philipp Schönbucher, 2009. "Background filtrations and canonical loss processes for top-down models of portfolio credit risk," Finance and Stochastics, Springer, vol. 13(1), pages 79-103, January.
  • Handle: RePEc:spr:finsto:v:13:y:2009:i:1:p:79-103
    DOI: 10.1007/s00780-008-0080-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-008-0080-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-008-0080-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    2. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195, April.
    3. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    4. Christophette Blanchet-Scalliet & Monique Jeanblanc, 2004. "Hazard rate for credit risk and hedging defaultable contingent claims," Finance and Stochastics, Springer, vol. 8(1), pages 145-159, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Jiao, 2009. "Multiple defaults and contagion risks," Papers 0912.3132, arXiv.org.
    2. Jakob Sidenius & Vladimir Piterbarg & Leif Andersen, 2008. "A New Framework For Dynamic Credit Portfolio Loss Modelling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 163-197.
    3. El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2017. "Dynamics of multivariate default system in random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3943-3965.
    4. Ying Jiao, 2009. "Multiple defaults and contagion risks," Working Papers hal-00441500, HAL.
    5. Nicole El Karoui & Monique Jeanblanc & Ying Jiao, 2013. "Density approach in modelling multi-defaults," Working Papers hal-00870492, HAL.
    6. Nicole El Karoui & Monique Jeanblanc & Ying Jiao, 2017. "Dynamics of multivariate default system in random environment," Post-Print hal-01205753, HAL.
    7. Biagini, Francesca & Mazzon, Andrea & Oberpriller, Katharina, 2023. "Reduced-form framework for multiple ordered default times under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 1-43.
    8. Ernst Eberlein & Zorana Grbac & Thorsten Schmidt, 2010. "Discrete tenor models for credit risky portfolios driven by time-inhomogeneous L\'evy processes," Papers 1006.2012, arXiv.org, revised Apr 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    2. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    3. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    4. Tomoaki Shouda, 2005. "Dynamical analysis of corporate bonds based on the yield spread term-quality surface," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(4), pages 307-332, December.
    5. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    6. Ruediger Frey & Lars Roesler & Dan Lu, 2017. "Corporate Security Prices in Structural Credit Risk Models with Incomplete Information: Extended Version," Papers 1701.04780, arXiv.org, revised May 2017.
    7. Delia Coculescu & Monique Jeanblanc & Ashkan Nikeghbali, 2012. "Default times, no-arbitrage conditions and changes of probability measures," Finance and Stochastics, Springer, vol. 16(3), pages 513-535, July.
    8. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    9. Tao Peng, 2010. "Portfolio Credit Risk Modelling and CDO Pricing - Analytics and Implied Trees from CDO Tranches," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 8, July-Dece.
    10. Gunter Meissner & Seth Rooder & Kristofor Fan, 2013. "The impact of different correlation approaches on valuing credit default swaps with counterparty risk," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1903-1913, December.
    11. Xin Guo & Robert A. Jarrow & Yan Zeng, 2009. "Credit Risk Models with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 320-332, May.
    12. Ceci, Claudia & Colaneri, Katia & Cretarola, Alessandra, 2017. "Unit-linked life insurance policies: Optimal hedging in partially observable market models," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 149-163.
    13. Lian Tang & Bin Wang & Kai-Nan Xiang, 2016. "Portfolio credit risk with predetermined default orders," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 131-149, January.
    14. Kay Giesecke & Lisa R. Goldberg & Xiaowei Ding, 2011. "A Top-Down Approach to Multiname Credit," Operations Research, INFORMS, vol. 59(2), pages 283-300, April.
    15. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    16. Antje Berndt & Peter Ritchken & Zhiqiang Sun, 2010. "On Correlation and Default Clustering in Credit Markets," The Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2680-2729, July.
    17. Tao Peng, 2010. "Portfolio Credit Risk Modelling and CDO Pricing - Analytics and Implied Trees from CDO Tranches," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2010, January-A.
    18. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    19. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    20. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.

    More about this item

    Keywords

    Credit risk; Default correlation; Point processes; Generalized Cox processes; Hypothesis ℍ; G13; 60G35; 91B28; 91B30;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:13:y:2009:i:1:p:79-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.