IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v04y2001i02ns0219024901000985.html
   My bibliography  Save this article

Mean-Variance Hedging For Partially Observed Drift Processes

Author

Listed:
  • HUYÊN PHAM

    (Laboratoire de Probabilités et Modèles Aléatoires, UFR Mathematiques, Case 7012, Université Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France)

Abstract

We consider the mean-variance hedging when an investor observes just the stock prices. We explain how the theory developed in Gouriéroux, Laurent and Pham (1998) and Rheinländer and Schweizer (1997) can be extended to this framework. We then focus to a diffusion model when drift of stock prices are not observed directly but only through a measurement process. By using filtering techniques, we obtain explicit formulae for optimal mean-variance hedging strategies and for the associated minimal risk. Closed-form expressions are provided in the case of a Bayesian investor and when the stock drift is modelled as a linear Gaussian process.

Suggested Citation

  • Huyên Pham, 2001. "Mean-Variance Hedging For Partially Observed Drift Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 263-284.
  • Handle: RePEc:wsi:ijtafx:v:04:y:2001:i:02:n:s0219024901000985
    DOI: 10.1142/S0219024901000985
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024901000985
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024901000985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market -with supplementary contents for stochastic interest rates-," CARF F-Series CARF-F-332, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Martin Schweizer & Danijel Zivoi & Mario Šikić, 2018. "Dynamic Mean–Variance Optimization Problems With Deterministic Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, March.
    3. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    4. Masashi Sekine, 2024. "Mean field equilibrium asset pricing model under partial observation: An exponential quadratic Gaussian approach," Papers 2410.01352, arXiv.org.
    5. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    6. M. Mania & R. Tevzadze & T. Toronjadze, 2007. "$L^2$-approximating pricing under restricted information," Papers 0708.4095, arXiv.org.
    7. Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market -with supplementary contents for stochastic interest rates-," CIRJE F-Series CIRJE-F-891, CIRJE, Faculty of Economics, University of Tokyo.
    8. Masaaki Fujii & Akihiko Takahashi, 2014. "Optimal Hedging for Fund & Insurance Managers with Partially Observable Investment Flows," CARF F-Series CARF-F-338, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Michael Monoyios, 2010. "Utility-Based Valuation and Hedging of Basis Risk With Partial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(6), pages 519-551.
    10. M. Mania & R. Tevzadze & T. Toronjadze, 2007. "Mean-variance Hedging Under Partial Information," Papers math/0703424, arXiv.org.
    11. Covello, D. & Santacroce, M., 2010. "Power utility maximization under partial information: Some convergence results," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2016-2036, September.
    12. Masaaki Fujii & Akihiko Takahashi, 2014. "Optimal Hedging for Fund & Insurance Managers with Partially Observable Investment Flows," CIRJE F-Series CIRJE-F-914, CIRJE, Faculty of Economics, University of Tokyo.
    13. Michael Mania & Marina Santacroce, 2008. "Exponential Utility Maximization under Partial Information," ICER Working Papers - Applied Mathematics Series 24-2008, ICER - International Centre for Economic Research.
    14. Masaaki Fujii & Akihiko Takahashi, 2014. "Optimal Hedging for Fund & Insurance Managers with Partially Observable Investment Flows," CARF F-Series CARF-F-348, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market," Papers 1306.3359, arXiv.org, revised Nov 2013.
    16. Masaaki Fujii & Akihiko Takahashi, 2014. "Optimal Hedging for Fund & Insurance Managers with Partially Observable Investment Flows," Papers 1401.2314, arXiv.org, revised Jul 2014.
    17. Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market," CARF F-Series CARF-F-321, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:04:y:2001:i:02:n:s0219024901000985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.