IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v42y2021i5-6p534-553.html
   My bibliography  Save this article

Simultaneous inference for autocovariances based on autoregressive sieve bootstrap

Author

Listed:
  • Alexander Braumann
  • Jens‐Peter Kreiss
  • Marco Meyer

Abstract

In this article, maximum deviations of sample autocovariances and autocorrelations from their theoretical counterparts over an increasing set of lags are considered. The asymptotic distribution of such statistics for physically dependent stationary time series, which is of Gumbel type, only depends on second‐order properties of the underlying time series. Since the autoregressive sieve bootstrap is able to mimic the second‐order structure asymptotically correctly it is an obvious problem whether the autoregressive (AR) sieve bootstrap, which has been shown to work for a number of relevant statistics in time series analysis, asymptotically works for maximum deviations of autocovariances and autocorrelations as well. This article shows that the question can be answered positively. Moreover, potential applications including spectral density estimation and an investigation of finite sample properties of the AR‐sieve bootstrap proposal by simulation are given.

Suggested Citation

  • Alexander Braumann & Jens‐Peter Kreiss & Marco Meyer, 2021. "Simultaneous inference for autocovariances based on autoregressive sieve bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 534-553, September.
  • Handle: RePEc:bla:jtsera:v:42:y:2021:i:5-6:p:534-553
    DOI: 10.1111/jtsa.12604
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12604
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Efstathios Paparoditis & Bernd Streitberg, 1992. "Order Identification Statistics In Stationary Autoregressive Moving‐Average Models:Vector Autocorrelations And The Bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(5), pages 415-434, September.
    2. Liu, Weidong & Wu, Wei Biao, 2010. "Asymptotics Of Spectral Density Estimates," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1218-1245, August.
    3. Efstathios Paparoditis & Dimitris N. Politis, 2012. "Nonlinear spectral density estimation: thresholding the correlogram," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 386-397, May.
    4. Jirak, Moritz, 2011. "On the maximum of covariance estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1032-1046, July.
    5. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    6. Wu, Wei Biao, 2009. "An asymptotic theory for sample covariances of Bernoulli shifts," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 453-467, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Han & Wu, Wei Biao, 2019. "Portmanteau Test and Simultaneous Inference for Serial Covariances," IRTG 1792 Discussion Papers 2019-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    3. Jirak, Moritz, 2014. "Simultaneous confidence bands for sequential autoregressive fitting," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 130-149.
    4. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    5. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    7. Horváth, Lajos & Rice, Gregory & Whipple, Stephen, 2016. "Adaptive bandwidth selection in the long run covariance estimator of functional time series," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 676-693.
    8. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
    9. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    10. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    11. Seok Young Hong & Oliver Linton & Hui Jun Zhang, 2014. "Multivariate variance ratio statistics," CeMMAP working papers 29/14, Institute for Fiscal Studies.
    12. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    13. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    14. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
    15. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    16. Zhang, Rongmao & Chan, Ngai Hang, 2018. "Portmanteau-type tests for unit-root and cointegration," Journal of Econometrics, Elsevier, vol. 207(2), pages 307-324.
    17. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    18. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    19. Panxu Yuan & Xiao Guo, 2022. "High-dimensional inference for linear model with correlated errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 21-52, January.
    20. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:42:y:2021:i:5-6:p:534-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.