IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v25y2021i3d10.1007_s00780-021-00459-2.html
   My bibliography  Save this article

Commonotonicity and time-consistency for Lebesgue-continuous monetary utility functions

Author

Listed:
  • Freddy Delbaen

    (ETH Zürich
    Universität Zürich)

Abstract

It is proved that monetary utility functions that are commonotonic and time-consistent are conditional expectations. We also give additional results on atomless and conditionally atomless probability spaces. These notions describe that in a filtration, there are many new events at each time step.

Suggested Citation

  • Freddy Delbaen, 2021. "Commonotonicity and time-consistency for Lebesgue-continuous monetary utility functions," Finance and Stochastics, Springer, vol. 25(3), pages 597-614, July.
  • Handle: RePEc:spr:finsto:v:25:y:2021:i:3:d:10.1007_s00780-021-00459-2
    DOI: 10.1007/s00780-021-00459-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-021-00459-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-021-00459-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Jie Shen & Yi Shen & Bin Wang & Ruodu Wang, 2019. "Distributional compatibility for change of measures," Finance and Stochastics, Springer, vol. 23(3), pages 761-794, July.
    3. Erio Castagnoli & Fabio Maccheroni & Massimo Marinacci, 2004. "Choquet Insurance Pricing: A Caveat," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 481-485, July.
    4. Freddy Delbaen & Fabio Bellini & Valeria Bignozzi & Johanna F. Ziegel, 2014. "Risk measures with the CxLS property," Papers 1411.0426, arXiv.org.
    5. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    6. Wang, Ruodu & Ziegel, Johanna F., 2015. "Elicitable distortion risk measures: A concise proof," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 172-175.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix-Benedikt Liebrich & Cosimo Munari, 2022. "Law-Invariant Functionals that Collapse to the Mean: Beyond Convexity," Mathematics and Financial Economics, Springer, volume 16, number 2, December.
    2. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    3. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
    4. Ruodu Wang & Zhenyuan Zhang, 2022. "Simultaneous Optimal Transport," Papers 2201.03483, arXiv.org, revised May 2023.
    5. Mononen, Lasse, 2024. "Dynamically Consistent Intertemporal Dual-Self Expected Utility," Center for Mathematical Economics Working Papers 686, Center for Mathematical Economics, Bielefeld University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    2. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    3. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    4. Wang, Ruodu & Ziegel, Johanna F., 2015. "Elicitable distortion risk measures: A concise proof," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 172-175.
    5. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    6. Pospisil, Libor & Vecer, Jan & Xu, Mingxin, 2007. "Tradable measure of risk," MPRA Paper 5059, University Library of Munich, Germany.
    7. Nendel, Max & Streicher, Jan, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    8. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    9. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    10. Mustapha Ridaoui & Michel Grabisch, 2016. "Choquet integral calculus on a continuous support and its applications," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(1), pages 73-93.
    11. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. repec:hal:pseose:hal-01373325 is not listed on IDEAS
    13. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    14. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.
    15. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    16. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    17. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    18. Dilip Madan & Martijn Pistorius & Mitja Stadje, 2013. "On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation," Papers 1301.3531, arXiv.org, revised Apr 2017.
    19. Fabio Bellini & Pablo Koch-Medina & Cosimo Munari & Gregor Svindland, 2020. "Law-invariant functionals that collapse to the mean," Papers 2009.04144, arXiv.org, revised Jan 2021.
    20. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    21. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.

    More about this item

    Keywords

    Time-consistency; Commonotonicity; Atomless probability spaces;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:25:y:2021:i:3:d:10.1007_s00780-021-00459-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.