IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1309.5094.html
   My bibliography  Save this paper

Hedging under multiple risk constraints

Author

Listed:
  • Ying Jiao
  • Olivier Klopfenstein
  • Peter Tankov

Abstract

Motivated by the asset-liability management of a nuclear power plant operator, we consider the problem of finding the least expensive portfolio, which outperforms a given set of stochastic benchmarks. For a specified loss function, the expected shortfall with respect to each of the benchmarks weighted by this loss function must remain bounded by a given threshold. We consider different alternative formulations of this problem in a complete market setting, establish the relationship between these formulations, present a general resolution methodology via dynamic programming in a non-Markovian context and give explicit solutions in special cases.

Suggested Citation

  • Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2013. "Hedging under multiple risk constraints," Papers 1309.5094, arXiv.org.
  • Handle: RePEc:arx:papers:1309.5094
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1309.5094
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Phelim Boyle & Weidong Tian, 2007. "Portfolio Management With Constraints," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 319-343, July.
    2. Gundel, Anne & Weber, Stefan, 2007. "Robust utility maximization with limited downside risk in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1663-1688, November.
    3. El Karoui, Nicole & Jeanblanc, Monique & Lacoste, Vincent, 2005. "Optimal portfolio management with American capital guarantee," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 449-468, March.
    4. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    5. Jules H. van Binsbergen & Michael W. Brandt, 2007. "Optimal Asset Allocation in Asset Liability Management," NBER Working Papers 12970, National Bureau of Economic Research, Inc.
    6. Bruno Bouchard & Thanh Nam Vu, 2012. "A Stochastic Target Approach for P&L Matching Problems," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 526-558, August.
    7. Martellini, Lionel & Milhau, Vincent, 2012. "Dynamic allocation decisions in the presence of funding ratio constraints," Journal of Pension Economics and Finance, Cambridge University Press, vol. 11(4), pages 549-580, October.
    8. Detemple, Jérôme & Rindisbacher, Marcel, 2008. "Dynamic asset liability management with tolerance for limited shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 281-294, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2017. "Hedging under multiple risk constraints," Finance and Stochastics, Springer, vol. 21(2), pages 361-396, April.
    2. De Franco, Carmine & Tankov, Peter, 2011. "Portfolio insurance under a risk-measure constraint," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 361-370.
    3. Cousin, Areski & Jiao, Ying & Robert, Christian Y. & Zerbib, Olivier David, 2016. "Asset allocation strategies in the presence of liability constraints," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 327-338.
    4. Areski Cousin & Ying Jiao & Christian y Robert & Olivier David Zerbib, 2021. "Optimal asset allocation subject to withdrawal risk and solvency constraints," Working Papers hal-03244380, HAL.
    5. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    6. Géraldine Bouveret, 2018. "Portfolio Optimization Under A Quantile Hedging Constraint," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-36, November.
    7. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    8. Mantilla-Garcia, Daniel & Martellini, Lionel & Garcia-Huitrón, Manuel E. & Martinez-Carrasco, Miguel A., 2024. "Back to the funding ratio! Addressing the duration puzzle and retirement income risk of defined contribution pension plans," Journal of Banking & Finance, Elsevier, vol. 159(C).
    9. repec:dau:papers:123456789/5374 is not listed on IDEAS
    10. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    11. Marcos Escobar-Anel & Yevhen Havrylenko & Rudi Zagst, 2022. "Value-at-Risk constrained portfolios in incomplete markets: a dynamic programming approach to Heston's model," Papers 2208.14152, arXiv.org, revised Jul 2024.
    12. Lijun Bo & Yijie Huang & Xiang Yu, 2023. "An extended Merton problem with relaxed benchmark tracking," Papers 2304.10802, arXiv.org, revised Jul 2024.
    13. Chen, An & Nguyen, Thai & Rach, Manuel, 2021. "Optimal collective investment: The impact of sharing rules, management fees and guarantees," Journal of Banking & Finance, Elsevier, vol. 123(C).
    14. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2013. "Hedging under an expected loss constraint with small transaction costs," Papers 1309.4916, arXiv.org, revised Sep 2014.
    15. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.
    16. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    17. Géraldine Bouveret & Athena Picarelli, 2020. "A Level-Set Approach for Stochastic Optimal Control Problems Under Controlled-Loss Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 779-805, September.
    18. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    19. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    20. Peter Lindberg, 2012. "Optimal partial hedging of an American option: shifting the focus to the expiration date," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(3), pages 221-243, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.5094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.