IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v91y2024ics0038012123002963.html
   My bibliography  Save this article

An attempt to correct the underestimation of inequality measures in cross-survey imputation through generalized additive models for location, scale and shape

Author

Listed:
  • Betti, Gianni
  • Molini, Vasco
  • Mori, Lorenzo

Abstract

This paper contributes to the debate on ways to improve the calculation of inequality measures in developing countries experiencing severe budget constraints. Linear regression-based survey-to-survey imputation techniques (SSITs) are most frequently discussed in the literature. These are effective at estimating predictions of poverty indicators but are much less accurate with inequality indicators. To demonstrate this limited accuracy, the first part of the paper review and discuss the SSITs. The paper proposes a method for overcoming these limitations based on a Generalized Additive Models for Location, Scale and Shape (GAMLSS). Before to apply this method to Moroccan data with the aim to analyze the relation between poverty and climate changes a simulation is carried out to compare classical SSIT and SSIT based on GAMLSS.

Suggested Citation

  • Betti, Gianni & Molini, Vasco & Mori, Lorenzo, 2024. "An attempt to correct the underestimation of inequality measures in cross-survey imputation through generalized additive models for location, scale and shape," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:soceps:v:91:y:2024:i:c:s0038012123002963
    DOI: 10.1016/j.seps.2023.101784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123002963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Elbers & Peter F. Lanjouw & Johan A. Mistiaen & Berk Özler & Ken Simler, 2004. "On the Unequal Inequality of Poor Communities," The World Bank Economic Review, World Bank, vol. 18(3), pages 401-421.
    2. Gabriel Demombynes & Johannes G. Hoogeveen, 2007. "Growth, Inequality and Simulated Poverty Paths for Tanzania, 1992--2002," Journal of African Economies, Centre for the Study of African Economies, vol. 16(4), pages 596-628, August.
    3. Newhouse, D. & Shivakumaran, S. & Takamatsu, S. & Yoshida, N., 2014. "How survey-to-survey imputation can fail," Policy Research Working Paper Series 6961, The World Bank.
    4. Caroline Krafft & Ragui Assaad & Hanan Nazier & Racha Ramadan & Atiyeh Vahidmanesh & Sami Zouari, 2019. "Estimating poverty and inequality in the absence of consumption data: an application to the Middle East and North Africa," Middle East Development Journal, Taylor & Francis Journals, vol. 11(1), pages 1-29, January.
    5. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    6. C. A. Field & A. H. Welsh, 2007. "Bootstrapping clustered data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 369-390, June.
    7. Alfani, Federica & Dabalen, Andrew & Fisker, Peter & Molini, Vasco, 2019. "Vulnerability to stunting in the West African Sahel," Food Policy, Elsevier, vol. 83(C), pages 39-47.
    8. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    9. Christian Schluter, 2012. "On the problem of inference for inequality measures for heavy‐tailed distributions," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 125-153, February.
    10. Astrid Mathiassen, 2013. "Testing Prediction Performance of Poverty Models: Empirical Evidence from U ganda," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(1), pages 91-112, March.
    11. Mohamed Douidich & Abdeljaouad Ezzrari & Roy Van der Weide & Paolo Verme, 2016. "Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer," The World Bank Economic Review, World Bank, vol. 30(3), pages 475-500.
    12. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
    13. David Locke Newhouse & Pallavi Vyas, 2018. "Nowcasting poverty in India for 2014-15: A Survey to Survey Imputation Approach," Global Poverty Monitoring Technical Note Series 6, The World Bank.
    14. Dabalen, Andrew & Graham, Errol & Himelein, Kristen & Mungai, Rose, 2014. "Estimating poverty in the absence of consumption data : the case of Liberia," Policy Research Working Paper Series 7024, The World Bank.
    15. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    16. Monique Graf & Desislava Nedyalkova, 2014. "Modeling of Income and Indicators of Poverty and Social Exclusion Using the Generalized Beta Distribution of the Second Kind," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 821-842, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Betti,Gianni & Molini,Vasco & Mori,Lorenzo, 2022. "New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation : An Attemptto Correct the Underestimation of Extreme Values," Policy Research Working Paper Series 10013, The World Bank.
    2. Theresa Beltramo & Hai-Anh Dang & Ibrahima Sarr & Paolo Verme, 2024. "Estimating poverty among refugee populations: a cross-survey imputation exercise for Chad," Oxford Development Studies, Taylor & Francis Journals, vol. 52(1), pages 94-113, January.
    3. Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021. "Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements," Policy Research Working Paper Series 9838, The World Bank.
    4. Dang, Hai-Anh H & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," IZA Discussion Papers 14631, Institute of Labor Economics (IZA).
    5. Hai-Anh H. Dang & Peter F. Lanjouw, 2023. "Regression-based imputation for poverty measurement in data-scarce settings," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 13, pages 141-150, Edward Elgar Publishing.
    6. Talip Kilic & Thomas Pave Sohnesen, 2019. "Same Question But Different Answer: Experimental Evidence on Questionnaire Design's Impact on Poverty Measured by Proxies," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(1), pages 144-165, March.
    7. Atamanov, Aziz & Tandon, Sharad & Lopez-Acevedo, Gladys & Vergara Bahena, Mexico Alberto, 2020. "Measuring Monetary Poverty in the Middle East and North Africa (MENA) Region: Data Gaps and Different Options to Address Them," IZA Discussion Papers 13363, Institute of Labor Economics (IZA).
    8. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    9. Dang, Hai-Anh H & Kilic, Talip & Hlasny, Vladimir & Abanokova, Kseniya & Carletto, Calogero, 2024. "Using Survey-to-Survey Imputation to Fill Poverty Data Gaps at a Low Cost: Evidence from a Randomized Survey Experiment," IZA Discussion Papers 16792, Institute of Labor Economics (IZA).
    10. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    11. World Bank, 2016. "Tunisia Poverty Assessment 2015," World Bank Publications - Reports 24410, The World Bank Group.
    12. Tomoki Fujii, 2013. "Geographic decomposition of inequality in health and wealth: evidence from Cambodia," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(3), pages 373-392, September.
    13. Araujo, M. Caridad & Ferreira, Francisco H.G. & Lanjouw, Peter & Özler, Berk, 2008. "Local inequality and project choice: Theory and evidence from Ecuador," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1022-1046, June.
    14. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    15. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    16. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    17. Cuesta, Jose & Chagalj, Cristian, 2019. "Measuring poverty with administrative data in data deprived contexts: The case of Nicaragua," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    18. World Bank, 2004. "Morocco - Poverty Report : Strengthening Policy by Identifying the Geographic Dimension of poverty," World Bank Publications - Reports 14420, The World Bank Group.
    19. Modrego, Félix & Berdegué, Julio A., 2015. "A Large-Scale Mapping of Territorial Development Dynamics in Latin America," World Development, Elsevier, vol. 73(C), pages 11-31.
    20. Hai-Anh H. Dang & Talip Kilic & Ksenia Abanokova & Gero Carletto, 2024. "Imputing Poverty Indicators without Consumption Data : An Exploratory Analysis," Policy Research Working Paper Series 10867, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:91:y:2024:i:c:s0038012123002963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.