IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v91y2024ics003801212300294x.html
   My bibliography  Save this article

A novel decision support system for the appraisal and selection of green warehouses

Author

Listed:
  • Sandra, Michael
  • Narayanamoorthy, Samayan
  • Ferrara, Massimiliano
  • Innab, Nisreen
  • Ahmadian, Ali
  • Kang, Daekook

Abstract

Global warming is a prevalent issue across the world. In supply chains, warehouses contribute significantly to the increase in greenhouse gas emissions. Achieving carbon reduction within the warehouse is an issue that must be addressed in the design of a green warehouse. The objective of this research is to establish a hybrid fuzzy multi-criteria decision-making (F-MCDM) paradigm for assisting stakeholders within a supply chain to select a sustainable and green warehouse. A case study is presented to determine the essential criteria for choosing a prospective green warehouse for storing dairy products. Based on the decision-maker’s opinion, a total of six criteria are taken from the literature. Besides the criterion “cost”, all the other five criteria focused on reducing the environmental footprint. “Bio polyurethane flooring”, “polyvinylidene fluoride walls” and “electric forklift” ranked the top three green warehouse selection criteria. The sensitivity study also confirms this analysis and the system’s stability. Additionally, the comparative analysis with the existing MCDM models justifies the superiority, reliability, and feasibility of the proposed technique. Moreover, out of the four green warehouse alternatives, warehouse number two got the highest rank. This research thus proves that sustainable building materials and energy-efficient technologies can successfully reduce the environmental footprint caused by warehouses.

Suggested Citation

  • Sandra, Michael & Narayanamoorthy, Samayan & Ferrara, Massimiliano & Innab, Nisreen & Ahmadian, Ali & Kang, Daekook, 2024. "A novel decision support system for the appraisal and selection of green warehouses," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:soceps:v:91:y:2024:i:c:s003801212300294x
    DOI: 10.1016/j.seps.2023.101782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S003801212300294X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    2. Bartolini, M. & Bottani, E. & Grosse, E. H., 2019. "Green warehousing: systematic literature review and bibliometric analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 112369, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Manirathinam, Thangaraj & Narayanamoorthy, Samayan & Geetha, Selvaraj & Othman, Mohd Fairuz Iskandar & Alotaibi, Badr Saad & Ahmadian, Ali & Kang, Daekook, 2023. "Sustainable renewable energy system selection for self-sufficient households using integrated fermatean neutrosophic fuzzy stratified AHP-MARCOS approach," Renewable Energy, Elsevier, vol. 218(C).
    5. Jeon, Jeonghwan & Suvitha, Krishnan & Arshad, Noreen Izza & Kalaiselvan, Samayan & Narayanamoorthy, Samayan & Ferrara, Massimiliano & Ahmadian, Ali, 2023. "A probabilistic hesitant fuzzy MCDM approach to evaluate India’s intervention strategies against the COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    6. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    7. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P., 2021. "Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II," Energy Policy, Elsevier, vol. 158(C).
    8. Yücenur, G. Nilay & Ipekçi, Ahmet, 2021. "SWARA/WASPAS methods for a marine current energy plant location selection problem," Renewable Energy, Elsevier, vol. 163(C), pages 1287-1298.
    9. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Ghenai, Chaouki & Albawab, Mona & Bettayeb, Maamar, 2020. "Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method," Renewable Energy, Elsevier, vol. 146(C), pages 580-597.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kara, Karahan & Yalçın, Galip Cihan & Simic, Vladimir & Baysal, Zeynep & Pamucar, Dragan, 2024. "The alternative ranking using two-step logarithmic normalization method for benchmarking the supply chain performance of countries," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    2. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Tagashira, Takumi, 2022. "Information effects of warehouse automation on sales in omnichannel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 66(C).
    4. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    5. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    6. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    7. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Pourya Pourhejazy, 2020. "Destruction Decisions for Managing Excess Inventory in E-Commerce Logistics," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    9. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    10. Boysen, Nils & Stephan, Konrad & Schwerdfeger, Stefan, 2024. "Order consolidation in warehouses: The loop sorter scheduling problem," European Journal of Operational Research, Elsevier, vol. 316(2), pages 459-472.
    11. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    12. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    13. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    14. Mirco Peron & Giuseppe Fragapane & Fabio Sgarbossa & Michael Kay, 2020. "Digital Facility Layout Planning," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    15. David Füßler & Nils Boysen & Konrad Stephan, 2019. "Trolley line picking: storage assignment and order sequencing to increase picking performance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1087-1121, December.
    16. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    17. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    18. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    19. Bingqian WANG & Xiuqing YANG & Mingyao QI, 2023. "Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 509-547, June.
    20. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:91:y:2024:i:c:s003801212300294x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.