IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v87y2023ipas0038012123000563.html
   My bibliography  Save this article

Towards social fairness in smart policing: Leveraging territorial, racial, and workload fairness in the police districting problem

Author

Listed:
  • Liberatore, Federico
  • Camacho-Collados, Miguel
  • Quijano-Sánchez, Lara

Abstract

Recent events (e.g., George Floyd protests) have shown the impact that inequality in policing can have on society. Thus, police operations should be planned and designed taking into account the interests of three main groups of directly affected stakeholders (i.e., general population, minorities, and police agents) to pursue fairness. Most models presented so far in the literature failed at this, optimizing cost efficiency or operational effectiveness instead while disregarding other social goals. In this paper, a Smart Policing model that produces operational patrolling districts and includes territorial, racial, and workload fairness criteria is proposed. The patrolling configurations are designed according to the territorial distribution of crime risk and population subgroups, while equalizing the total risk exposure across the districts, according to the preferences of a decision-maker. The model is formulated as a multi-objective mixed-integer program. Computational experiments on randomly generated data are used to empirically draw insights into the relationship between the fairness criteria considered. Finally, the model is tested and validated on a real-world dataset about the Central District of Madrid (Spain). Experiments show that the model identifies solutions that dominate the current patrolling configuration used.

Suggested Citation

  • Liberatore, Federico & Camacho-Collados, Miguel & Quijano-Sánchez, Lara, 2023. "Towards social fairness in smart policing: Leveraging territorial, racial, and workload fairness in the police districting problem," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
  • Handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000563
    DOI: 10.1016/j.seps.2023.101556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123000563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Liberatore & M. Camacho-Collados, 2016. "A Comparison of Local Search Methods for the Multicriteria Police Districting Problem on Graph," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, March.
    2. Eiselt, H.A. & Marianov, Vladimir, 2020. "Maximizing political vote in multiple districts," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    3. G. O. Mohler & M. B. Short & Sean Malinowski & Mark Johnson & G. E. Tita & Andrea L. Bertozzi & P. J. Brantingham, 2015. "Randomized Controlled Field Trials of Predictive Policing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1399-1411, December.
    4. Baycik, N. Orkun & Sharkey, Thomas C. & Rainwater, Chase E., 2020. "A Markov Decision Process approach for balancing intelligence and interdiction operations in city-level drug trafficking enforcement," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    5. Camacho-Collados, M. & Liberatore, F. & Angulo, J.M., 2015. "A multi-criteria Police Districting Problem for the efficient and effective design of patrol sector," European Journal of Operational Research, Elsevier, vol. 246(2), pages 674-684.
    6. Utku Girit & Meral Azizoğlu, 2021. "Rebalancing the assembly lines with total squared workload and total replacement distance objectives," International Journal of Production Research, Taylor & Francis Journals, vol. 59(22), pages 6702-6720, November.
    7. Federico Liberatore & Miguel Camacho-Collados & Begoña Vitoriano, 2020. "Police Districting Problem: Literature Review and Annotated Bibliography," International Series in Operations Research & Management Science, in: Roger Z. Ríos-Mercado (ed.), Optimal Districting and Territory Design, chapter 0, pages 9-29, Springer.
    8. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    9. Liao, Cong & Scheuer, Bronte & Dai, Teqi & Tian, Yuan, 2020. "Optimizing the spatial assignment of schools to reduce both inequality of educational opportunity and potential opposition rate through introducing random mechanism into proximity-based system," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    10. David Buil-Gil & Juanjo Medina & Natalie Shlomo, 2021. "Measuring the dark figure of crime in geographic areas: Small area estimation from the Crime Survey for England and Wales [From Broken Windows to Busy Streets: A Community Empowerment Perspective’]," The British Journal of Criminology, Centre for Crime and Justice Studies, vol. 61(2), pages 364-388.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    2. Alsenafi, Abdulaziz & Barbaro, Alethea B.T., 2018. "A convection–diffusion model for gang territoriality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 765-786.
    3. Shixiang Zhu & He Wang & Yao Xie, 2022. "Data-Driven Optimization for Atlanta Police-Zone Design," Interfaces, INFORMS, vol. 52(5), pages 412-432, September.
    4. E L Hillsman, 1984. "The p-Median Structure as a Unified Linear Model for Location—Allocation Analysis," Environment and Planning A, , vol. 16(3), pages 305-318, March.
    5. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    6. He, Yan & Wu, Tao & Zhang, Canrong & Liang, Zhe, 2015. "An improved MIP heuristic for the intermodal hub location problem," Omega, Elsevier, vol. 57(PB), pages 203-211.
    7. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    8. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    9. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    10. Wen, Meilin & Iwamura, Kakuzo, 2008. "Fuzzy facility location-allocation problem under the Hurwicz criterion," European Journal of Operational Research, Elsevier, vol. 184(2), pages 627-635, January.
    11. K E Rosing, 1991. "Towards the Solution of the (Generalised) Multi-Weber Problem," Environment and Planning B, , vol. 18(3), pages 347-360, September.
    12. Kangxu Wang & Weifeng Wang & Tongtong Li & Shengjun Wen & Xin Fu & Xinhao Wang, 2023. "Optimizing Living Service Amenities for Diverse Urban Residents: A Supply and Demand Balancing Analysis," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    13. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    14. Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.
    15. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    16. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    17. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    18. Peeters, Peter H., 1998. "Some new algorithms for location problems on networks," European Journal of Operational Research, Elsevier, vol. 104(2), pages 299-309, January.
    19. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
    20. Milosav Georgijevic & Sanja Bojic & Dejan Brcanov, 2013. "The location of public logistic centers: an expanded capacity-limited fixed cost location-allocation modeling approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(2), pages 218-229, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.